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1. INTRODUCTION
The main aim of these notes is to present some homological aspects of higher cluster tilting theory in
triangulated categories. We concentrate at four themes:

(i) Characterizations and basic properties of cluster tilting subcategories.
(ii) The Gorenstein condition.
(iii) The Calabi-Yau condition.
(iv) Global dimension of non-stable cluster tilting subcategories.

In the following we describe the main results contained in the notes, the starting point of which are the two
basic papers of Keller and Reiten [21, 22].

1.1. Cluster-tilting subcategories. Let 7 be a triangulated category with split idempotents. We fix a
full subcategory X of T and we assume always that X is closed under isomorphisms, (finite) direct sums and
direct summands.

Definition 1.1. For an integer n > 1, we say that X is (n + 1)-cluster tilting if:

(i) X is functorially finite in 7.
(i) X={AeT|T(X,A[]) =0, 1<i<n}.
(iii) X ={AeT|T(AX[]) =0, 1<i<n}.

1.2. Some useful tools. There are several tools for the study of an (n + 1)-cluster tilting subcategory X of
T. For the moment, let X be an arbitrary full subcategory of 7.
1. Associated with X are the full subcategories, k > 1:

Xy ={AeT|T(X,A[i]) =0, 1<i<k} and X ={AeT|T(AX[i])=0, 1<i<k}
We call X n-rigid if X < X or equivalently X < | X. Note that we have a decreasing filtration of T

T D2 xlT -] DC;— > ... D fx;c'— > ... (1.1)
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2. For any k > 0, we consider all morphisms f : A — B in T such that T(X[k], f) = 0. The set of all
such morphisms forms a subgroup Ghyx(4, B) of T(A, B), called the subgroup of X[k]-ghost maps and in
this way we obtain an ideal Ghy[;}(T). Then the product ideal

G (T) = Gha(T) © Ghyy) (T) © Ghypz (T) © -+ 0 Ghyp_1(T)

is defined, and clearly thé”l] (A, B) consists of all maps f : A — B which can be written as a composition

f=foofio---o fr_1, where fo : A— By is X-ghost, f; : Bo — By is X[1]-ghost, - -+, frn—1: Bp_1 — B
is X[k — 1]-ghost.

Then there is an increasing filtration of the Hom-functor J(—, —) of T:
. c GhlT) < - ¢ Gl < Ghy(T) € T(—,-) (1.2)

3. The structure of the ideal th?] (T) of X-ghost maps is related to the structure of the category
X x X[1] *- - -« X[k] of extensions of the subcategories X[k]. Recall that if o7, i = 1,2, are full subcategories
of T, then &7 x @% is the full subcategory of T consisting of all direct summands of objects C' € T for which
there exists a triangle A1 — C — Ay —> A4[1], where A; € . The full subcategory @4 » o * - - % Ay, is
defined inductively fro full subcategories A;, 1 < i < k.

Then we have an increasing filtration of J:

X ¢ X»X[1] € -+ € X«X[1]*--+xX[k] € -+ © T (1.3)

4. Finally an indispensable tool for the study of an (n + 1)-cluster tilting subcategory X of T is the
homological functor
H:T — mod-X, H(A)=7T(—, 4)|x
defined for any contravariantly finite subcategory X of T, where we denote by mod-X the category of coherent
(or finitely presented) contravariant functors over X. Note that an easy consequence of the fact that X is
contravariantly finite in 7, is that mod-X is abelian.
If X is 1-rigid, then the functor H is surjective on objects.

1.3. Relative Homology in TJ. If X is a full contravariantly finite subcategory of 7, then for any object
A € T, there exists a triangle
QL4 — X4 — A — QA (A)1]

where the middle map is a right X-approximation of A. Note that the object Q% (A) is uniquely determined
in the stable category T/X. Inductively we define the object Q5.(A), Vk > 1. If X is covariantly finite, then
dually the objects ZIE’C(A) are defined, Yk > 1. The minimum k, or co, such that Q% lies in X, is well-defined,
it is denoted by gl. dim, T and is called the X-global dimension of TJ.

Then we have the following characterizations of when a full subcategory X of T is (n + 1)-cluster tilting,
for some n > 1.

Theorem A. Let X be a full subcategory of T, and n = 1. Then the following are equivalent.
(i) X is a (n + 1)-cluster tilting subcategory of T.

(vii) X is contravariantly (or covariantly) finite n-rigid and: T =X » X[1] *--- * X[n].
(viii) X is contravariantly (or covariantly) finite n-rigid and: GhI"*+1 (T) =0.
(ix) X is contravariantly (or covariantly) finite n-rigid and, VAe T: Q% (A) € X.

X is covariantly (or contravariantly) finite n-rigid and, VA€ T: X%(A) e X.

)
)
)
)
(vi) X is contravariantly (or covariantly) finite n-rigid and: gl.dimy T = n.
i)
)
)
)
) T

o [n+ 1] is injective in mod-X and the functor
H: X [n+ 1] — mod-X is full and reflects isomorphisms.
If X is a (n + 1)-cluster subcategory of T, then DC;EH =0= I_HJC, the abelian category mod-X has enough
projectives and enough injectives, the functors X[n + 1] — mod-X «— X are fully faithful and induce
equivalences
X[n+1] = Injmod-X and X = Projmod-X
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1.4. The Gorenstein condition. Let &/ be an abelian category with enough projectives and enough injec-
tives. Recall the following invariants attached to .<7:

silpe/ = sup{id P| P € Proj.«/}, splieZ =sup{pdI|I € Inj</}

G-dim &/ := max {silp,szf7 spli,;zf}

We call G-dim .o/ the Gorenstein dimension of &/ and then & is called Gorenstein if G-dim«/ < 0. If
G-dim o/ < n < o, then we say that & is n-Gorenstein.

Let X be an (n + 1)-cluster tilting subcategory of T, n = 1. If n = 1, then by a result of Keller-Reiten
[21], the category mod-X is 1-Gorenstein. However this fails for n > 1. To remedy this failure, we consider a
strengthening of the notion of cluster tilting subcategories.

Definition 1.2. An (n + 1)-cluster tilting subcategory X of T is called t-strong, where 1 < ¢ < n, if:
T, X[—i]) =0, 1<i<t
And X is called strictly ¢-strong, if X is t-strong but not (¢ + 1)-strong.

Then we have the following result.

Theorem B. Let T be a triangulated category and X an (n + 1)-cluster tilting subcategory of 7.
(i) If n =1, then G-dimmod-X < 1.
(ii) G-dimmod-X = 0 if and only if X is n-strong.
(iii) Assume that n = 2 and X is (n — k)-strong, where 0 < k < n — 1. Then for n = 2k — 1, the cluster
tilted category mod-X is Gorenstein:
n+1

0 2

N

k < — G-dimmod-X < k

In particular:
(a) Ifn is odd and X is ("glz-strong, then: G-dimmod-X < 2t

2
(b) If n is even and X is (“4L)-strong, then: G-dimmod-X < 25*.

2
o Moreover if X is strictly (n — k)-strong, then: G-dimmod-X = k.

As a consequence we have the following which shows that if mod-X has finite global dimension, then it can
be realized as a full subcategory of T, in some cases via a ¢-functor.

Theorem C. Let X an (n — k)-strong (n + 1)-cluster tilting subcategory of T. If mod-X has finite global
dimension, and n = 2k, then gl.dimmod-X < k and there is an equivalence

T(— N = (CxX[A]*--- % X[k]) n X[k +1] =5 mod-X

If k =1, then the induced full embedding T : mod-X — T s a d-functor, which extends uniquely to an
additive functor Db(mod-f)C) — T commuting with the shifts.

1.5. The Calabi-Yau condition. Assume that the triangulated category T is k-linear with finite-dimensional
Hom-spaces over a field k. Let X be an (n + 1)-cluster tilting subcategory of T, n > 1. We assume that T is
(n + 1)-Calabi- Yau. This roughly means that there are natural isomorphisms:

D Homg(A, B) = Homg (B, A[n +1])

VA, B € T, where D denotes duality with respect to the base field k.
If n =1, and 7 is 2-Calabi-Yau, then by a result of Keller-Reiten [22], the stable category GProjmod-X of
the Gorenstein-projective (or Cohen-Macaulay) objects of the 1-Gorenstein category mod-X is 3-Calabi-Yau.
Assuming that n > 1.

Theorem D. Assume that T is (n+1)-Calabi- Yau over a field k, and X is an (n—k)-strong (n+1)-cluster
tilting subcategory of T, 0 < k < n — 1. Then GProjmod-X is (n + 2)-Calabi- Yau in the following cases:
(i) 0<k <1, or,
(ii)) 2 € k < ";1, and any object T(—,C)|x in mod-X, where C' € X[—n + 1] » -+ * X[—1], has finite
projective or injective dimension.
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1.6. Global dimension of non stable cluster tilting subcategories. Let <7 be an abelian category with
enough projective objects. We consider full subcategories M of &7, closed under isomorphisms, finite direct
sums and direct summands.

In analogy with the triangulated case, we define for any full subcategory M € o:

Mi={Aded | Ex**(M,A) =0, 1<k<n} and ;M={Aded | Ext"(4,M)=0, 1<k<n}

Then M is called n-rigid if M € M;; or equivalently M < ;LM

We are interested in the case M is a lift of a cluster tilting subcategory X of the triangulated category
Gproj .« of Gorenstein-projective objects of <7, in the sense that M = 7~1(X), where 7 : GProj.«/ —» GProj ./
is the natural projection functor. Note that then M contains the projectives and at the level of coherent
functors we have an inclusion mod-X € mod-M.

Let U, V be full subcategories of /. Then we define U ¢V to be the full subcategory

UoV =add{A e .« | I an exact sequence: 0 — U — A —V — 0, where Ue U and V €V}

Inductively we define U; oUso- - -oWUs,, Vn = 1, for full subcategories U; of «7. Finally we denote by ProjS* 7,
the full subcategory of &/ consisting of all objects with projective dimension < k.

Theorem E. Let o7 be an abelian category with enough projectives. Let X be a full subcategory of GProj .of
and set M = 7~ 1X. Then the following are equivalent. o
(i) o is Gorenstein and X is an (n + 1)-cluster tilting subcategory of GProj .« .
(ii) M is contravariantly finite in o/ and M- n GProj.«/ = M and gl. dim mod-M < oo.
If (i) holds and X # 0, then M n GProj .o/ = M, we have an equality

A =MoQ ™Mo -0 Q"M o ProjSley (1.4)
where G-dim o/ = d, and gl. dim mod-M is bounded as follows:
n+2 < gl.dimmod-M < max{n,G-dime} +3 (1.5)

Moreover pdyog.v F =1+ 2, VF € mod-X, F # 0, and:

(a) If G-dim«Z < n, then: gl.dimmod-M =n + 2.

(b) If G-dim & = n, then: gl.dimmod-M € {n+2,n+ 3}.

(¢) If G-dime/ > n, then: n+2 < gl.dimmod-M < G-dim« + 3.
If GProj <7 is (n + 1)-Calabi-Yau, then we have relative (n + 2)-Calabi-Yau duality [21]: for any object
F € mod-X € mod-M, there is a natural isomorphism:

D Hompe (mod-aty (Fs =) — Hompe (mod-ny (= Fn + 2])
In particular, for any two objects F,G € mod-M with F € mod-X € mod-M:
DExt}oq.n (F.G) —= Extioiti(G.F), ieZ

As a consequence we have the following, see [21] for the case n = 1.

Theorem F. Let o/ be an abelian category with enough projectives and enough injectives. For a full
subcategory M < GProj o7, the following are equivalent.
(i) & is Frobenius and M is an (n + 1)-cluster tilting subcategory of < .
(ii) M is contravariantly finite in </, contains the projectives, and M = M.
(iii) M is covariantly finite in </, contains the injectives, and M = M.
(iv) M is n-rigid, contravariantly in </ and contains the projectives, or covariantly finite and contains
the injectives, and gl. dim mod-M = n + 2.
In particular if <7 is a Krull-Schmidt Frobenius abelian category and X is an (n + 1)-cluster subcategory of
o/ which is of finite representation type, then

rep.dima/ <n +2

The invariant rep. dim .27 above is Auslander’s representation dimension, which in this context is defined
to be the minimum of the global dimensions gl. dim mod-End(T"), where T runs over all objects such that the
subcategory add T contains the projectives and the injectives and moreover admits weak kernels and weak
cokernels, equivalently the ring End.(7T') is coherent.



2. RELATIVE HOMOLOGY

Throughout the paper we denote by T a triangulated category with split idempotents. We fix a full additive
contravariantly finite subcategory X of 7 which is closed under isomorphisms and direct summands.
Let A be in T and consider triangles

94 rh 1y

QL1 (A) Xt QL (A) —2 QL A)1] (T%)

where Q9. (A4) := A, and the middle map X! — Q%.(A) to be a right X-approximation of Qg{l(A). Applying
the homological functor H: T — Mod-X, defined by H(A) = T(—, A)|x, to the above triangles we have exact
sequences H(Q4 ' A) — H(XY) — H(Q4%A) — 0, V¢ > 0. In particular we have an exact sequence which
is a projective presentation of H(A):

H(X}) — H(X%) — HA) — 0
It follows that H(A) is coherent and therefore H induces a homological representation functor
H:7 — mod-X, H(A)=T(—, A)|x

Since T, as a triangulated category, has weak kernels, and since X is contravariantly finite in 7, it is easy to
see that X has weak kernels and therefore the category mod-X is abelian with enough projectives and it is
well-known that H induces an equivalence X =~ Projmod-X. Clearly we have

KerH=XT:={AeT | T(X,A) =0}

Remark 2.1. Dually if X is covariantly finite, then the category X-mod of coherent covariant functors is
abelian and we have a contravariant cohomological functor

HoP : 7% — X-mod, H(A)=T(A4,—)|x
Clearly then KerH® = TX := {Ae T | T(A4,X) = 0}.
2.1. Ghost and Cellular Towers. Fix an object A in T and consider as before the triangles

gt I3 nt
5 > Q5 (4) —> QA1) (T4)

X

Q1 (A)

Then, as in [8, Section 5], we may construct inductively a tower of triangles in 7" containing all the essential
information concerning the homological behavior of A with respect to X, that we need in the sequel. We
proceed as follows: First we form the weak-push-out, in the sense of [8], of the triangle

0 0
ga 0 fA

xq 4 o (19)

Qx(4)
along the map hl : Q1.(A) — Q% (A)[1]. Then we obtain a morphism of triangles

4 ha

oL(4) —4,  xq A QL(A)[1] ()

N N I

1 1

B A] 2 Cell(4) 2 A A QR (A)2) (CH)

Next consider the weak push-out of the lower triangle along the map h?[1] : Q3. (4)[1] — Q3.(4)[2]:

1
Wa

Q2(A)1] —2s Celly(4) —s 4 Q2.(A)[2] ()
wi | o2 H [mae

2
WA

Q3 (A)[2] — Celly(4) —245 A

Q3 (A)[3] (C3)

Continuing in this way we obtain the following tower of triangles, henceforth denoted by (C%):



QL(4) A, Cellg(a) A, 4 4 QL (A)[1] (%)
2y J= H [ |
Q2(A[1] A Cellh(4) A, 4 _“a 02 (A)[2] ()
R3] j lai H j h3 2] j
QA2 —A Celly(4) A, 4“2 Q3 (A)[3] (C2)

| L | |

n—2 n—2 n—2
Ba

O (A)n - 2] —2— Cell,_a(A) —2— A —2— Q2 (A)[n—1] €
i) N e

v —1 3
B4 Ya

Qe (A)[n —1] Cell,—1(A) a2 Q(A)[n] (@i
l l | l |

where for convenience we set: Cellp(4) := X4, w9 :=hY, B = f4, and 74 = ¢4. We call the map
7% : Cell,,(A) — A the n'"-cellular approximations of A and the induced tower

2

A =Cellg(A) —2 Celly(A) —225 Celly(A) —— -

n—1
Xp

— 5 Cell, 1 (A) 2 Cell,(A) —— - (Cell’y)

the cellular tower of A with respect to X, and the tower of objects

Iy ISARY|
E—

A= Q%(4) — Qi) R(A)2] —— -

— W -1 S

is called the Ghost tower, or an Adams resolution, of A with respect to X.

Remark 2.2. (i) By the construction of the cellular tower (C'%) we have triangles, V¢ > 1:

X4t —1] — Cell_1(A) —4 Cell,(4) — X4 [f] (2.2)

X401 —— QA 5 OF (At + 1] —— Q)] +1]) (23)
Since Cellp(4) = X9 € X, it follows that we have a triangle X4 — Cell;(4) — X}[1] — X9[1] and
therefore Cell;(A) € X » X[1]. By induction it follows that:
Cell,(A) € X x X[1]*---*X[t], V&0
(ii) Splicing the triangles (7% ) we obtain a complex

n 1 0
SR o N NN ¢ W2 N ¢ R 2 N | (X%)
where €y = f% o0 g’i~!, ¥n > 1. Note that the complex (X%) does not necessarily becomes exact after the
application of the functor H.
(iii) If Q% (A) lies in X, then Q% (A) lies in X+ X[1] % - » X[n — t], and we may choose X% = Q% (A). As
a consequence we may choose QS‘CH(A) =0,Vt=1.
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2.2. Cellular and Co-Ghost Cotowers. Dually if X is covariantly finite in T, then for any object A € T
we may construct inductively triangles (T/), ¢t > 0:

i s g

S (A)[-1] —— 5 (4)

X Sy (4) (T7)

where the middle map is a left X-approximation of ¥/(A4), and £%(A) := A. As before we may construct
inductively a cotower of (morphisms of) triangles, henceforth denoted by (C4), Vt > 0:

S (A)[~1] Y, A L cellt N A) 2 R (A)[—t + 1] (CA)
B [—t41] l H latA_l lhfﬂ_z l
t—1 h?—l ﬂ{q_l t—2 ’YtA—l t—1
SN A) [t + 1] A Cell"?(4) —— S (A)[~t +2] (CA D

where we set: Cell®(A) := X§', wi :=hg, B := f&', and v§' := g¢'. The inverse tower of objects
a? A
S Cel™*t(A) /5 Cel®(A) —22 Cell™ 1(A) —— -

af o A
L — Cel’(A) —2 Cell'(4) —25 Cell®(4) = A (Celly’)
is called the cellular cotower of A with respect to X, and the cotower of objects

hia[-n] b [-n+1]
_—

- A - 1] SR (A)[n] S S 1] ——

Ap_ A A
SA)[-2] 2 sy )] s 2y =4 (Gh)
is called the co-ghost cotower, or an Adams coresolution, of A with respect to X.

Remark 2.3. By the construction of the cellular tower Cell:4 we have triangles, Vn > 1:
XA[—n] — Cell"(4) — Cell™ Y(A) — XA [—n + 1] (2.4)
Since Cell’(4) = X&' € X, it follows that we have a triangle X{*[-1] — Cell’(4) — Xg' — X{* and
therefore Cell'(A) € X[—1] * X. By induction it follows that:
Cell'(A) € X[—t] * X[t + 1] *--- % X[-1]*X, ¥n=0

2.3. The functor H : T — mod-X. We call an additive functor F' : &/ —> % between additive categories
&/ and % almost full if for any map « : F(A) — F(B) in %, there are objects A*, B* in & and maps
a* : A* — B* wy 1 A* — A and wp : B* — B, such that the maps F(wa) : F(A*) — F(A) and
F(wg) : F(B*) — F(B) are invertible and the following square commutes:

Fax) 2D, pps
F(wA)lE F(wB)lE

F(A) —*— F(B)
Clearly F is full if and only if F' is almost full and F is full on isomorphisms, i.e. any isomorphism g :
F(X) — F(Y) is of the form F(f) for some map f: X — Y in &/.
From now on the above notations will be used without further mentioning.

Now let as before X be a contravariantly finite subcategory of T and assume that X is closed under direct
summands and isomorphisms.

Lemma 2.4. Assume that T(X,X[1]) = 0.
(1) YA e T: HQL(A)[1]) = 0, Vk = 1. Moreover the map H(~v}) : H(Cell; (A)) —> H(A) is invertible.
(ii) The functor H : T —> mod-X is almost full and essentially surjective.

Proof. (i) Applying the homological functor H to the triangle Q’&(A) — Xffl — Ql&_lA — Q&(A)[l]
and using that T(X, X[1]) = 0, we see that H(2%(A4)[1]) = 0. On the other hand since H(h%) = 0, applying

H to the triangle (C}) : Q% (A)[1] — Cell;(4) 22 A4 =4 02(A4)[2] and using that H(Q% (A)[1]) = 0 and
H(wy) = H(hY) o H(R4[1]) = 0, we infer that the map H(v}) is invertible.

(i) Let H(X') — H(X%) — F — 0 be a projective presentation of F' € mod-X. If X! — X° —
A — X1[1] is a triangle in T, then applying H and using that T(X, X[1]) = 0, we have that H(A) = F, so H is
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essentially surjective. Let o : H(A) — H(B) be a map in mod-X and let H(X}) — H(X%) — H(4) — 0
and H(X}) — H(X%) — H(B) — 0 be projective presentations of H(A) and H(B). Since H|y is full and
H(X) = Projmod-X, we get a map of projective presentations in mod-X

H(eh) H(F2)

H(X3) H(X2) H(A) —— 0

w| e !

El 0
HxL) ) yxoy HU2), gy g

Using that H|y is faithful, we get a morphism of triangles

1 1
X, 2, X9 %4, Cellh(4) —— X4[1]

Ll -] l
1 1
XL —2 5 X0 %2, Celly(B) —— XA[1]
By the construction of the towers (C%) and (Cy) we have: o)y oy} = f4 and a} ovf = f5, and by part (i)

the maps H(v}) and H(v}) are invertible. Consider the diagram:

HXQ) 2 cen (4)) 104, Hea)

HGo) | Ha®) | o

1 1
HXY) 2 HCelly(B)) —2)s H(B)
where the left square is commutative. Then H(ay) o H(v}) oa = H(f$) oa = H(B) o H(f%) = H(B) o H(ak) o
H(v5) = H(ay) o H(a*) o H(vL). By Remark 2.2 the cone of oy lies in X[1], so H(a'}) is an epimorphism.
Then H(y4) o a = H(a*) o H(v%) and the right square is commutative. Hence H is almost full. O

3. GHOSTS AND EXTENSIONS

Let as before X be a contravariantly finite subcategory of 7. Our aim here is to analyze the structure of
maps in T which are invisible by the functor H : 7 — mod-X, in the sense of the following definition.

Definition 3.1. A map f: A— B in 7 is called X-ghost if T(X, f) = 0; equivalently H(f) = 0.

We let Ghy (A, B) be the set of all X-ghost maps between A and B. Clearly Ghx (A4, B) is a subgroup of

T(A, B) and it is easy to see that in this way we obtain an ideal Ghx(7) of 7. We denote by th?] (A, B)
the subset of T(A, B) consisting of all maps f : A — B which can be written as a composition f =
foofio---0 fn_1, where fo : A — By is X-ghost, f1 : By — By is X[1]-ghost, ---, fn—1: Bp—1 — Bis
X[n — 1]-ghost. Hence th?] (7) is the product of ideals Ghx;1(7), 0 <i<n —1:

GhN(T) = Ghue(T) 0 Ghxp1)(T) 0 Ghxpoy () 0+ - © Ghiy 1) (T)

Proposition 3.2 (The Ghost Lemma). (i) For a map f: A— B in T, the following are equivalent:
(a) feGhl(A,B).
(b) There exists a map g : Q% (A)[n] — B such that:
f=E=D" "R ohy[1]o-oh n—1]log=w}i"og
(ii) Let A be an object in T, and consider the following statements:
(a) Q% (A) e X.
(b) Ae X X[1]*---»X[n].
(¢) Ghl (4, —) = 0.
Then (a) = (b) < (c). In particular: T =X = X[1] * -+ * X[n] if and only if th?H] (T)=0.

Proof. (i) Clearly if f is as in (b), then f lies in th?] (A, B), since by construction hi[i] is X[i]-ghost,
0<i<n-—1,cf (24). To show the converse, let n =1 and f: A — B be X-ghost. Then the composition
XY — A — B is zero and therefore it factorizes through h% : A — Q3.(A)[1]. f n=2and f: A — B
lies in Gh:[)?] (A, B), then f admits a factorization f = fyo fi, where fy : A — By is X-ghost and f; : By — B
is X[1]-ghost. Then there exists a map go : Q4.(4)[1] — By such that fo = hY o go. Since f; is X[1]-ghost,
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so is go o fi and therefore its composition with the map X} [1] — Q3.(A)[1] is zero. Hence there exists a
map g : Q3.(4)[2] — B such that (—h}[1])og = goo fi. Then f = foo f1 = h%ogoo fi = h%o(—h4[1])og.
Hence f = —(hY o h[1]) 0 g = w)| o g. The assertion for n > 3 follows by induction.

(ii) (a) = (b) Since Cell,_1(A) lies in X » X[1] - -- » X[n — 1], it follows that if Q% (A) lies in X, then A
lies in X * X[1] * - -+ » X[n] as follows from the triangle (C"; ') in the tower of triangles (C%).

(b) & (c) If n =0, i.e. A€ X, then clearly thg] (A,—) = Ghx(A,—) =0. Let n =1, so that A € X« X[1],
i.e. there is a triangle Xg — A A, X1[1] — Xo[1], where the X; lie in X. Let f be in th?] (A, B), ie. f
admits a factorization f = fy o f1, where fy : A — By is X-ghost and f; : By — B be X[1]-ghost. Then
fo = B og for some g : X1[1] — By. Since the composition g o f; : X;[1] — B is X[1]-ghost, we have
gofi =0. Then f = foo fi = Bogo fi =0. Hence th?](A,B) = 0. For n = 3 the assertion follows by
induction. Conversely if Ghl' (4, —) = 0, then the map w? = h% o hY[1]o--- o0 A% [n — 1] o h%[n] lies in
th?ﬂ] (A, Q3 (A)[n]), and therefore w? = 0. This implies that A lies in X  X[1] » - -- « X[n] as a direct
summand of Cell,(A) € X * X[1] - -- x X[n]. O

Lemma 3.3. For any t > 0, the map v : Cell,(A) — A is a right X » X[1] % - - - » X[t]-approzimation of A.
In particular X = X[1] % - - - x X[t] is contravariantly finite in 7.

Proof. Consider the triangle (C41) : Q1 (A)[f] 25 Cell,(A) 25 A % QU Y(A)[t+1]. Letg: C —> A
be a map, where C lies in X * X[1] * - -- X[t]. Since the map w’ lies in théﬂ](A,QgCH(A)[t + 1]), it follows

that g o w!y lies in Gh:[,erl](C'7 QEFL(A)[t +1]). Since C € X * X[1] % -+ -« X[¢], by the Ghost Lemma, we have
gow’y =0 and therefore g factorizes through Cell;(A), i.e. 4% is a right (X * X[1] » - - - » X[t])-approximation
of A and X » X[1] * - -+ » X[t] is contravariantly finite in 7. O

Lemma 3.4. For any objects A, B € T and any t = 1, we have an equality:
GhE* (A, B) = Ghoyapawe. sy (A, B)

Proof. If f : A — B lies in Ghy,xpjs...ax[] (4, B), then the composition 7Yy o f is zero since Cell(A) €
X xX[1] %+ -+ X[¢t]. Hence f factorizes through w : A — QY1 (A)[t +1], say as f = wh og. Since w lies in
GhEF (A, QL (A)[t+1]), f lies in GhET(A, B). Hence Ghauxigenanpg (A, B) € GhET (A4, B). Conversely

if f lies in thzﬂ] (A, B), then by the Ghost Lemma we have f = w o g for some g : Q';CH(A)[t +1] — B.
This implies that 7% o f = 0. Since, by Lemma 3.3, %, is a right X » X[1] * - - - * X[t]-approximation of A, we
have T(C, f) = 0, VC € X« X[1] - --* X[t], so f lies in Ghx,x[1ja...xx[] (4, B). The last assertion is clear. [

Remark 3.5. For any integer n > 1, we define th;n] (A, B) to be the subgroup of T(A, B) consisting of
all maps f : A — B which can be written as a composition f = f 110 f_pi00---0 f_1 0 fp, where
foi:B_j—1 — B_; is X[—i]-ghost, A = B_,, and By = B. Clearly then the map

Gh:[{n](/LB) — th?](A[n—l],B[n—l]L f— fln—1]

is an isomorphism. It follows from Lemma 3.4 that we have an isomorphism th[,n]*___*x[,l]*x(AB) ~
Ghocaxcp1]x-sxn] (A[n], B[n])-

Clearly if X € Y, then Ghy(A, B) € Ghy (A, B). Hence the increasing filtration by subcategories of T
X € XxX[1] € X+X[1]*X[2] € -+ € X« X[1]*---*X[t] € --- €T (3.1)
induces a decreasing filtration of its Hom-functor of T by ghost ideals:
cc GhlNT)y < oo 2 ahld(T) < Ghe(T) € T(—,-) (3.2)
By the Ghost Lemma it follows that the above filtrations have the same length.
Proposition 3.6. Let X be a contravariantly finite subcategory of T. Then there exists an exact sequence
0 —> Ghx(A, B) — T(A, B) —> Hom[H(A), H(B)] — Ghx(Q%(A4), B) — Ghl (A, B[1]) — 0
for any objects A, B € T, where Ha p : T(A, B) — Hom(H(A),H(B)) is the canonical map.
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Proof. We construct maps
94,5 : Hom(H(A),H(B)) — Ghx(Q4(A),B) and (ap: Ghy(Q4(A), B) — GhE (4, B[1])

as follows. Let o : H(A) — H(B) be a map and consider the triangle Q3. (4) — X§ — A — QL (A)[1].
Then we have an exact sequence H(Q3.(4)) — H(X9Y) — H(A) — 0 in mod-X. Then the composition
H(f%) o o : H(X%) — H(A) — H(B) is of the form H(a*) for a unique map a* : X4 — B. Define
Iapla) =g¢%oa*: Q. (A) — B. Clearly g% o a* is X-ghost since H(g% o a*) = H(g%) o H(a*) = H(¢%) o
H(f%) oa = 0. Now in o € Hom(H(A), H(B)) lies in Ker 4 g, then ¥4 g(a) = ¢% o a* = 0, then a* = f4 o3
for some map 3 : A — B and then H(f}) o a = H(a*) = H(f9) o H(8) and therefore o = H(3). Conversely
if « = H(B), for some map 3: A — B, then a* = f§ o3 and then ¥4 p(a) = g4 ca* = g% 0 fQoB = 0.
Hence Kerd 4, g = ImH4, . On the other hand, if o : Q%C(A) — B is an X-ghost map, then since h%[—1] is
clearly X[—1]-ghost and « is X-ghost, it follows by the above Lemma that h%[—1]oa € Ghy[_1j.x(A[—1], B),
hence by Remark 3.5, we have a map (a g : Ghx(Qx(A), B) — th?] (A, B[1]), a > Ca,p(a) = hY o a[1].
We show that (4 p is surjective. Let o : A — B[1] be a map in th?](AB[l]), so o = (o7, where
B € Ghy(A,C) and v € Ghy17(C, B[1]). By the Ghost Lemma, 8 = h% o p, for some map p : Q5. (A4)[1] — C.
Then the map (pov)[—1] : Q4 (A) — B is X-ghost and ¢4, 5((po7v)[—1]) = «, so (a5 is surjective. Finally
we show that Ker(ap = Imda p. Let B : Q3 (4A) — B be X-ghost such that (4 5(8) = h% o B[1] =

Then 3 = g% o+, for some map v : X4 — B. Since 0 = H(3) = H(g%) o H(7), there exists a unique map
a : H(A) — H(B) such that H(f$)oa = H(y). It follows that ¥4 () = ¢4 oy = B, i.e. Ker(ap S Imia 5.
Finally if 6 : Q}.(A) — B is in the image of ¥4 g, then § = ¢4 o §* for some map §* : X4 — B. Plainly
Ca,B(0) = 1Y 0 g%[1] 0 0%[1] =0, i.e. § € Ker(a,p. Hence Ker(a g = ImJ4 p and the sequence is exact. [

We say that a map a : H(A) — H(B) is realizable (with respect to H), if a« = H(a*) for some map

* 1 A — B. The obstruction group O4 g of the objects A,B € T is defined as the cokernel of the

natural map Ha g : T(A, B) — Hom(H(A),H(B). Clearly O4 g = 0 if and only if any map H(A4) — H(B)
is realizable, and O4 g =0, VA, B € T, if and only if H is full.

Corollary 3.7. Let X be a contravariantly finite subcategory of T. If T(X,X[1]) = 0, then VA € X » X[1] we
have Oa.p =0, VB e T, i.e. there is an exact sequence:

0 — th(A,B) —> (.T(A,B) —> Hom[H(A)7 H(B)] — 0
Moreover the functor H induces an equivalence: (X * X[1])/X[1] —~5 mod-X.
Proof. If A € X*X[1], then there is a triangle X; — X¢ — A — X;[1], where X; € X. Since T(X, X[1]) =
0, the map Xy — A is a right X-approximation, hence X; = QX.(4). It follows that Ghx(Q.(A4),—) =0

and then by Proposition 3.6, the map Ha p : T(A,B) — Hom[H(A),H(B)] is surjective, YB € TJ. In
particular H : X * X[1] — mod-X is full. If & : A — B is X-ghost, then by the Ghost Lemma, « factorizes

through hY : A — Q3.(4)[1]. Since Q4. (A)[1] = X [1], we infer that Ghy (A, B) is the subgroup of all

maps factorizing through an object from X[1]. Finally let F' = H(A) be in mod-X and consider the triangle
1 1 1

(Ch) + Q3(A[1] Pa, Cell;(4) 22 4 0%(A)[2]. Since T(X, X[1]) = 0, we have H(QZ(A)[1]) = 0

and since w) is X-ghost, we have H(w)) = 0. Hence the map H(v}) : H(Cell;(4)) — H(A) is invertible, i.e.

H: X x X[1] — mod-X is surjective on objects. O

Proposition 3.8. Let X be a contravariantly finite subcategory of T. Then for any object A € T such that
T(X, A[—1]) = 0, there exists a T-term exact sequence:

0 —> Gha(A, B) —> T(A, B) 225 Hom(H(A), H(B)) ™25 Ghx(Qx(A), B) "5

Gha(4, B[1]) 23 Ext! (H(A), H(B))— Oq (a5 —> O (3.3)
where Im(94.5) = Oap and Im(nap) = GhEl(A, B[1]).

Proof. Applying H to the triangle Qx(A4) — X4 — A — Qx(A4)[1] and using that H(A[-1]) = 0, we
have an exact sequence 0 — H(Qx(4)) — H(XY) — H(A) — 0 and an exact commutative diagram

T(9%.B)
—_—

.— JA4,B) —— T(X%,B) T(Qx(A),B) —— ImT(h4[-1],B) —— 0
HA,Bl Hx%,BJ; HQX(A),Bl ¢l

0 —— (H(A),H(B)) —— (H(X2),H(B)) —— (H(Qx(4)),H(B)) —— Ext'(H(A),H(B)) —— 0
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and we know that KerHa g = Ghx (A, B), CokerHa g = Oa g, and KerHg, (1), = Ghx(Qx(A), B), and
CokerHa, (4),B = Oqy(a),B- Moreover the above diagram induces an exact sequence:

0—> 045 —> Ghy(Qu(A), B) —> ImT(h)[~1], B) -2 Ext'(H(A), H(B)) —> Coker ¢ —> 0
By chasing the above diagram we see easily that Coker ¢ = Coker Hq, (1), = O, (4),5 and Im T(h%[-1],B)
= Ghy_1j(A[-1], B) and Ker¢ = Ghy[_1j.x(A[—1], B). Since, by Remark 3.5, we have isomorphisms:
Gha_1)(A[—1], B) = Ghx(A4, B[1]) and Ghy_yp.xc(A[-1], B) = Ghl*/(A[-1], B) = Ghl(4, B[1]), (3.3)
follows by splicing the above exact sequence with the exact sequence of Proposition 3.6. 0
Corollary 3.9. Let X be a contravariantly finite subcategory of T, and assume that T(X, A[—1]) = 0.
(i) If Q% (A) € X, then, VB € T, there is an isomorphism
Ext!(H(A) H(B)) = 2nx(dBlD
Ghy (4, B[1])
(ii) If Ae X« X[1] and T(X,X[1]) = 0, then, VB € T, there is an isomorphism:
Ext'(H(A),H(B)) = Ghx(4, B[1])
(iii) If A,B e X xX[1] and T(X,X[1]) = 0 = T(X,X[2]), then there is an isomorphism:
Ext'(H(A),H(B)) = T(4,B[1])

Proof. (i) Since Q% (A) € X, it follows that Q% (A) € X « X[1]. Then by Corollary 3.7 we have Oar (a),8 =0,
VB € T, and the assertion follows from (3.3).

(i), (iii) If A € XX » X[1] and T(X,X[1]) = 0, then Qx(A) € X. Hence Ghy (4 (A),B) =0 = Oq1 (4),p and
the map Ghy(A, B[1]) — Ext'(H(A),H(B)) is invertible. Finally assume that in addition T(X,X[2]) = 0
and B € X «X[1]. Then there exists a triangle X! — X% — B — X![1] where the X7 lie in X. Applying
H and using that T(X, X[i]) = 0, 1 < 4 < 2, it follows that H(B[1]) = 0. In particular any map A — B[1]
is X-ghost. Hence by (ii), Ghx (A, B[1]) = T(A, B[1]) and (iii) follows from (ii). O
Corollary 3.10. Let X be a contravariantly finite subcategory of T. Let t = 2 and assume that T(X, X[—i]) =
0,1 <i<t—1. Then for any A€ T such that T(X, A[—i]) =0, 1 < i < t, and any object B € T, there exists
an exact sequence, 1 <t <t —1:

0 —> Ghy (% (A), B) — T(Q%(A), B) — Hom(H(Q%(A)), H(B)) —> Ghy(Q4'(A), B) —
Ghy (% (A), B[1]) — Ext't' (H(A),H(B))— Ogiti(ayp — O (3.4)

Proof. Applying the functor H to the triangles Q% (A) — Xf[z — Qé{l(A) — QY(A)[1], 0, and usmg
the vanishing conditions of the statement, we see easily that we have T(X, Q% (A)[—t+k]) = <k<gt-1.

iz
0,1
As consequence we have short exact sequences 0 —> H(Q%(A4)) — H(X5!) — H(QA1(A) — 0,
1<k <t s0 QFH(A) = H(Q5(A)), 1 < k < t. Since T(X, Q5 (A)[-1]) =0, 1 < k <t — 1, the existence of
(3.4) follows from Proposition 3.8, by replacing A with Q.(A). O

Lemma 3.11. For any objects A, B € T and any k = 0, there is an epimorphism:
¢ 5 ¢ Ghy(Q4(A), B[1]) — GhY* (A, Bk +1]) — 0

which is an isomorphism for 0 < k < n, if T(X,B[i]) =0, 1 <i < n. In this case we have a isomorphisms

~

Pip s TQ(A),B[]) = T(A,Bk+1]) and ¢l p: T(QR(A),B[1]) = Ghi*' (A, B[n +1])
for 1 <k < n. In particular we have a monomorphism 0 — T(Q%(A), B[1]) — T(A, B[n +1]).

Proof. Define ¢ (o) = wh=1 o afk]. Since w¥~! lies in Ghk-(A, Qk (A)[k]) and since a[k] is X[k]-ghost, it
follows that ¢% (a) lies in Ghi™' (A, B[k + 1]). Now if 8 : A — B[k + 1] lies in th“(A B[k: +1]), by
the Ghost Lemma, there exists a map v : Q5" (A) — B[k + 1] such that 8 = Wk o fy = wA o hk[k] o .
Clearly the map h% o v[—k] : Q%(A) — B[1] is X-ghost and @Z,B(hﬁl oy[—k]) = Wit o hE[K] oy =
wh oy = B, so % p(a) is surjective. Assume now that T(X,B[i]) = 0,1 <i<n and let a € Kergh 5,
where 1 < k < n. Then w’ ' o a[k] = 0 and therefore a[k] factorizes through the cone Celly_1(A)[1] of
wh=1. Since Celly_1(A)[1] lies in (X * X[1] x -+ X[k — 1])[1] = X[1] * - - - = X[K], it is easy to see that the
condition T(X, B[i]) = 0, 1 < i < k forces any map from an object in X[1] » --- x X[k] to B[k + 1] to be
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zero. Hence afk] or equivalently « is zero. We infer that gp’j‘ p is injective for 0 < k£ < n. Now observe
that, since T(X, B[1]) = 0, we have Ghx (0% (A), B[1]) = ‘.T(Q’;C(VA), BJ[1]), Yk = 0. We show by induction on
k that th?](A,B[k]) = TJ(A,B[k]), 1 £ k € n. Indeed if k = 1, then any map o : A — B[1] is X-ghost
since T(X,B[1]) = 0. If k = 2 and o : A — BJ[2] is a map, then since T(X, B[2]) = 0, the composition
X9 — A — B[2] is zero and therefore a = h% o ay for some map a; : Q%C(A)[l] —> BJ2]. Clearly a; is
X[1]-ghost since T(X, B[1]) = 0. Hence a lies in GhiJ(A4, B[2]) and therefore GhE (A, B[2]) = T(A, B[2]).
Continuing in this way and using that k& < n, we see that any map « : A — B[k + 1] admits a factorization
a = wh o a1 [k] for some map agyq @ Q51 (A)[1] — B[1]. It follows that o lies in GhE (A, Bk + 1))
and therefore th?H] (A,Blk+1]) =T(A,B[k + 1] for 0 < k < n. O

Corollary 3.12. Let X be a contravariantly finite subcategory of T. Lett = 2 and assume that T(X, X[—i]) =
0, 1<i<t—1, and T(T(X,X[i]) =0, 1 <i <t Let Ae T be such that: A e X x X[1] » --- x X[t] and
T(X,A[—i]) =0, 1 <i <t. Then VB e T, we have Ext' "' (H(A),H(B)) = 0, so pd H(A) < t, and:

Ext'(H(A),H(B)) —= Ghx(Q4'(A),B[1]) and Ext" '(H(A),H(B)) = GG:[ZC]((%%Z(&))’@ [[11]]))
X X )

If in addition T(X, B[1]) = --- = T(X, B[t — 1]) = 0, then: Ext'(H(A),H(B)) = Gh{l(4, B[1)).

Proof. The assumptions on A imply easily that Q% (A) € X, see Proposition 4.3(iii) below. Then Q&_I(A) €
X X[1], and therefore we have Oqx 4y, =0, for k =t,t—1, and Ghy (2%.(A),—) = 0. It follows from (3.4),
for i = t, that Ext'™' (H(A),H(B) = 0. Next setting i = t — 1 in (3.4), we have the first isomorphism, and
setting ¢ =t — 2 in (3.4) we have the second isomorphism. Finally if T(X, B[i]) =0, 1 <4 < t — 1, Corollary
3.11 shows that Ghy(Q4 ' (A), B[1]) thé](A, B[t] and therefore the last isomorphism follows. O

4. RIGID SUBCATEGORIES

Throughout this section we fix a triangulated category 7 and a contravariantly finite subcategory X of T
which is closed under direct summands and isomorphisms.
For n = 1, we consider the following subcategories associated to X:

Xy i={AeT | T(X,A[i]) =0, 1 <i<n} and [X:={AeT | T(AX[]) =0, 1<i<n}

We also set: XT:=X] ={AeT|T(X,4) =0} and "X :=JX ={AeT|T(4,X) =0}
Observe that X7 = XJ = X{[1] and "X = JX = (] X)[—1], and we have filtrations:

T2X 2X 22X 2 - (4.1)

X € XxX[1] € - € X*xX[1]*---*X[n] € --- © T (4.2)
Definition 4.1. A full subcategory X € T is called n-rigid, n > 1, if: T(X, X[i]) =0, 1 <i < n.

It follows that that X is n-rigid if and only if X € X or equivalently X < [X. We show that that
contravariantly finite n-rigid subcategories in T give rise to torsion pairs in the sense of the following definition,
see [12], [16]. A pair (X,Y) of full subcategories of T is called a torsion pair in 7, if T(X,Y) = 0 and for any
object A in T there is a triangle X4 —s A — Y4 — X 4[1], where X4 € X and Y4 € Y. A triple (X, Y, 2)
of subcategories of T is called a torsion triple if (X,Y) and (Y, Z) are torsion pairs.

If (X,Y) is a torsion pair in T, then clearly the map X4 — A is a right X-approximation of A, and the
map A — Y4 is a left Y-approximation of A. Hence X is contravariantly finite and Y is covariantly finite in
T. Moreover it is easy to see that XT =Y and TY =X, and X nY = 0.

Proposition 4.2. If X is n-rigid, n = 1, then we have the following.
(i) Q%A eX],t=1, and Q% (A)eX/], 1<t <n.
(i) H(X[1] *» X[2]--- * X[n]) = O and there is a torsion pair

(X*X[l]*DC[Q]*n-*DC[t—l],x;r[t]), 1<t<n (%)

The map 'y : Cell,_1(A) —> A is a right (X » X[1] % - - - » X[t — 1])-approzimation of A, the map
H(’yf{l) is inwvertible, and the map wi(l : A — QL (A)[t] is a left X[ [t]-approzimation of A.
(iii) Yt =1,2,--- ,n: Q4(A) e X if and only if Ae X » X[1] » -+ * X[¢].
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Proof. (i) Consider the triangles associated to A constructed before:
he(4) — X1 — O '(4) — Q(A)[1] (Th)
Applying the homological functor H : T —> mod-X to the triangles (7) and using that X is n-rigid, it
follows that H(Q4(A)[1]) = 0, ¥t > 1, and H(Q4(A)[i]) = HQE(A)[i +1]), for 1 < ¢t < n—1 and
1 <i<n-—1 Hence for any t = 1,2,---,n, we have: H(Q4(A)[t]) = HOQY (At -1]) =~ - =
H(Q% (A)[2]) = H(Q(4)[1]) = 0. It follows that Q4. (4) € X[, 1 <t < n, and Q. (A) e X], V¢ > 1.
(i), (iii) Since YA € T we have a triangle, where Cell;_1(A) € X+ X[1]*---» X[t — 1] and Qb (A)[t] € X[ [t],

Cell, 1(4) 25 a4 A, gty " cel )] ()
it suffices to show that T(A, B) = 0, for any object A in X % X[1] * -+« X[t — 1] and any object B € X[ [t].
We have B = C[t], where C € X/, i.e. T(X,C[1]) = --- = T(X,C[t]) = 0. On the other hand, since

AeX % X[1] *---» X[t — 1], there are triangles X;[i] — A; 25 Ay — X;[i +1], for i = 0,1,--- ,t — 2,
where Ag = Aand X; € X, A;_; € X. Let f: A — CJ[t] be a map. Then the composition Xg — A — C[¢]
is zero and therefore f factors through a; : A — Ay, say via a map f; : 44 — C[t]: f = a1 0 f1.
Similarly the composition X1[1] — A; — C[¢] is zero, hance f; factors through ay : Ay — A,, say via
amap fo : Ao — C[t]: fi = a2 o fo. Continuing in this way we deduce after ¢ — 2 steps that the map
fi—s 1 At—a —> C[t] admits a factorization fi_3 = ay_s0 fi_s. Since the composition X;_o[t—2] — A;_o2 —>
C[t] is zero, the map f;_o factorizes through oy 1 : Ao — A; 1, say via a map fi_1 : 4,1 — C[t]:
fi—a =aq_10 fi_1. Since A;_1 € X[t — 1], so A;_1 = X*[t — 1], with X* € X, the map f,_; is zero since it
lies in T(A;—1,C[t]) @ T(X*,C[1]) =0. Then f =10 fi =--=ajo0az0---0oa_10 fr_1 =0. Hence (*)
is a torsion pair in T, and it remains to show that H('yf4) is invertible, 1 < ¢ < n — 1. This follows directly
from (i) and the construction of the cellular tower (C'%) of A.

(iv) Tt follows from the triangle (1) that Q4 (A) € X implies that A € XxX[1]---xX[t]. Conversely assume
that A € X*X[1]*---*X[t]. Then the right (X *X[1]- - - X[¢t])-approximation ~% : Cell;(4) — A splits and
therefore w! = w' ! o bt [t] = 0. Hence the map h[t] factorizes through the cone Cell’y '[1] of W' !, say via
amap f: Cell_1(A)[1] — Q4 (A)[t + 1]. We show that f = 0 or equivalently f[—1] = 0. Indeed there are
triangles XZ[Z] —> Mi —> Mi+1 —> Xl[l—i-l], where the Xi lie in DC, MO = Cellt_l(A), MZ‘ € X[Z]* . X[t—l],
and M; 1 = X; [t — 1] € X. Now Q&' (A) € X/. Indeed this follows form (i) if ¢ < n — 1 and by applying
H to the triangle Q&H(A) — X} — QR (4) — Q&H(A)[l] and using that Q%(A4) € X}, if t = n. It
follows that the composition Xo — My — Q4! (A)[t] is zero, hence f[—1] : My — Q4T (A)[t] factorizes
through My — M. Similarly since the composition X;[1] — M; — Q&H(A)[t] is zero, the map M; —
Q&H(A) [t] factorizes through My — My, hence f[—1] factorizes through My — M. Continuing in this way
we find that M, 3 — Q4! (A)[t] factorizes through M, . Finally since the map X; o[t —2] — Q4! (A)[t]
is zero, the map M; [t — 2] —> Q&' (A)[t] factorizes through M; | = X; 1[t — 1] — Q4 (A)[t]. This
last map being zero, it follows that so is the map f[—1] : My — Q&' (A)[t]. Hence f = 0 and therefore

R[] = 0. Then from the triangles, X4[f] — Q4 (A)[] "8 QW (A)[t+1] — X4[t+1], cf. Remark
2.2, we deduce that Q% (A)[¢] lies in X[t] as a direct summand of X [¢]. It follows that Q%.(A) € X. O

As a direct consequence of the Ghost Lemma (Proposition 3.2) and Proposition 4.2 we have the following.

Corollary 4.3. Let X be n-rigid. Then for any object A€ T and 1 <t < n, the following are equivalent:
(i) Q4%(A4)eX.
(if) Ae X *X[1]* - X[t].
(iii) GhE™(4,—) = 0.
Combining Proposition 4.2(ii) and Remark 2.2, we also have the following.
Corollary 4.4. Let X be a contravariantly finite n-rigid subcategory of T and A € T. Then the maps
7Yy : Cell,(A) — A and oy : Cell,_1(A) — Cell;(A) of the cellular tower of A induce isomorphisms:

H(A) = H(Cell;(4)) =5 H(Celly(4)) = --- =5 H(Cell,(A4))
and exact sequences:
! H(XY) — H(Cellp(A4)) — H(Cell;(A)) — 0
0 — H(Cell,(A)) — H(Cell,11(A) — HX5 ' [n+1])

The following gives a condition ensuring that the filtrations (3.2), (4.1) and (4.2) stabilize:
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Theorem 4.5. Let X be a contravariantly finite n-rigid subcategory of T. Then the following are equivalent:
(i) X! =X.
(i) QR (A) e X, VAeT.
(iii) GhE"*H(T) = 0.
(iv) T=XX[1] *---* X[n].

If one of the above equivalent conditions holds, then DCIHC =0, Vk=1.

Proof. Since by Proposition 4.2, Q% (A)[n] lies in X [n], condition (i) implies that Q% (A) € X, VA € T. Hence
(i) = (ii), and by Corollary 4.3 we have (ii) < (iii) < (iv). We show that (iv) = (i). By Proposition 4.2
we know that, for any object A € 7, the map wzfl : A — Q% (A)[n] is a left X]-approximation of A and
Q% (A)[n] lies in X[n] since Q% (A) € X by Corollary 4.3. Hence if A € X,[[n], the map w’ " is split monic
and therefore A lies in X[n] as a direct summand of Q%(A4)[n]. We infer that X,| [n] € X[n], or equivalently
X} € X. Since X is n-rigid, we have X < X}, hence X! = X, i.e. (iv) = (i).

If one of the first four equivalent conditions holds, then let A € X ; and B = A[1]. Then T(X,B) = 0
and clearly B € X. Since X] = X, it follows that T(B,B) = 0, i.e. B = A[1] = 0 and therefore A = 0.
Hence X}, | = 0 and then trivially X[ , =0, Yk > 1. O

Under the equivalent conditions of Theorem 4.6, we now show that Ker H = X7 admits a nice description.

Corollary 4.6. Let X be a n-rigid subcategory of T, where n = 1. If T = X « X[1] x--- x X[n], then the full
subcategories X7 and TX are functorially finite in T. Moreover:

xT = X[1] * X[2] » - - - » X[n] and Tf)CzX[—n]*%[—n+1]*--~*f)€[—1]

Proof. By Remark 2.2 we have Q4.(A) € X+ X[1] »--- » X[n —¢], 0 < t < n. Hence QL (A)[1] € (X x X[1] *
<o X[n — 1])[1] = X[1] * - - - * X[n]. By Proposition 4.2(iii) we have X[1] * --- * X[n] € XT. Consider the
triangle Q3. (4) — X% — 4 — Q3 (A4)[1]. If A — B is a map, where B € X[1] x --- » X[n], then the
composition X§ — A — B is zero and therefore A — B factorizes through hl : A — Q1.(A)[1]. Hence
hl is a left (X[1] * - - - * X[n])-approximation of A. If A€ XT, then the map X4 — A is zero and therefore
A lies in X[1] % --- * X[n] as a direct summand of Q% (A)[1], i.e. XT € X[1] » --- x X[n]. By Proposition 4.4,
Xx---*X[n—1] is contravariantly finite. This clearly implies that (X*---*X[n—1])[1] = X[1]*---*X[n] = XT
is also contravariantly finite. The proof for TX is dual and is left to the reader. O

We close this section with the following vanishing result, which, will be useful later and, gives conditions

ensuring that the sequence of cones {w% : A — Q§ (A)[n]}, _, is eventually trivial.

Lemma 4.7. Let X be a contravariantly finite n-rigid subcategory of T. Then YA € X » X[1] * - -« X[n]:
T(Q%(A),X[n—t+1]) =0, 1<t<n (4.3)

Moreover w, =0, ¥t = n, and there is a decomposition: Cell,(A) =~ A® Q4 (A)[t], V¢ = n.

Proof. Since A € X x X[1] % --- x X[n], by Corollary 4.3 we have Q% (A) lies in X. Then the triangles
Qe(A) — X7 — Q7 H(4) — Q(A)[1], 1<t<n (Th)

show that Qf.(A) lies in X » X[1] % - -+ » X[n — t]. Since by Proposition 4.2 we have a torsion pair (X x X[1] %
sk X[ —t], X _yq[n—t+1]) in Tand X[n—t +1] € X}, [n —t + 1], because X € X, |_,, |, we get

directly (4.3). On the other hand the right (X » X[1] % - - - « X[n])-approximation v} of A splits and therefore
w?% = 0. Then from the tower of triangles (C'%), we have w% =0, Vt > n. O

5. HOMOLOGICAL DIMENSION

Let T be a triangulated category with split idempotents and X a contravariantly finite subcategory of T.
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5.1. The adjoint pair (X, {2x). Let A be in T and consider triangles

94 o fa hy & 3 wo [a ha A
Qx(A) —> XA == A 5 Qx(A)[l] and Qx(A) —> XA = A 5 Qx(A)[l]
where the maps X§ — A «— X% are right X-approximations. Then there are maps 3 : X4 — X% and
B: X4 — X9 inducing morphisms of triangles:

Ox(d) Lm xS oy ) B Xy e a0,
lv iﬁ ~ l| ~ iv[ll ia la l' lw]
Qp(A) - x0 2o 4 Mo Qx(A) 2 x0 T4 Mgy

Since h%[~1] o707 = h%[~1] and B9 o4 oy = h9[—1], there are maps x : X4 —> Qx(A) and A : X%, —
Qx(A) such that: 1, (4)—v07 = g% ok and Lo, (a)y— Yoy = g% 0. This means that the map 7 is invertible in
T/X and v~! = 4. We infer that the object Qx(A) is uniquely determined by A up to an isomorphism in the
stable ca‘cggory 5’/1)6 and does not depends on the choice of the right X-approximations. Now if « : A — B
is a map in 7, then « induces a morphism of triangles indicated in the left of the following display

Qu(A) Pm xq T 4y Qu(A) 2w xq L O (A)1]
lv iB la l'y[ll lv’ iﬁ' J/Oé lv[ll
Qx(B) 2> X9 2o "2 0y (B)[1] Qx(B) 2> X9 2o B "L 0y (B)[1]

The maps  and «y are not uniquely determined, so if there are maps 8’ and 4/ making the diagram on the right
of the above display a morphism of triangles, then clearly v — ' = g% o p for some map p : X§ — Qx(B).
Then v = 4/ in the stable category T/X and this unique map is denoted by x(a). It is then easy to see that
the assignments A — Qx(A) and a — Qx (@) define an additive functor Qx : T/X — T/X. Dually if X is
covariantly finite, then by performing the dual constructions we obtain an additive functor ¥y : T/X — T/X.

Lemma 5.1. If X is a functorially finite subcategory of T, then we have an adjoint pair
(B, Qx) = T/X — T/X
and the unit § : ldg/x — QxXx and the counit € : XxQx — Idg/x induce isomorphisms:
Qx(e) : Ty — Qx  and  Tx(d) : Tx — Ty Ey

Proof. Using functorial finiteness of X we may construct triangles

fézx(A) g;ZX(A) }LBZX(A) ot P it
Qux(A) xgx B Qo (A) —— Qo (A)[1] A xg S (A) A
[ 4 €A I sA lf’ I sall]
0 0 0 9 12 hQ
9A o fa ha IBx(A) Z(A) T (A
Qx (A) XA A Qo (A)[1] QT (A) —> X5 (a) Sx(A) Qx T (A)[1]

We leave to the reader to check that the induced maps €4 : ¥xQx(4A) — A and §, : A — QxZx(4)
are natural and define the counit and the unit of an adjoint pair (Xx,Qx) in T/X. Since by construction
T(X, h%x(A)) = T(X,e4) o T(X,hY) = 0 and ‘J'(h%x(A) [-1],X) = T(d4,X) o T(h{[—1]) = 0, it follows that

(?X(A) : Xélx(A) — YxQx(A) is a right X-approximation of XxQx(A) and the map g%x(A) :

QxXy(A) — X%X(A) is a left X-approximation of Qx¥x(A). As a consequence by the above triangles we

infer that the maps Qx(g4) : QxZxQx(4A) — Qx(4) and Xx(d4) : Vx(A) — ExQxQx(A) are invertible.
Hence we have natural isomorphisms: Qx(g) : Qo2 Qx =5 Qy and Yx(0) : Xx =5 Yoy Dy O

5.2. Homological Dimension. If A € T, we define the X-projective dimension pd, A of A to be the
smallest n = 0 such that Qf.(4) = 0 in T/X or equivalently Q% (A) € X. If Q% (A4) ¢ X, Vn > 0, then we set
pdy A = 0. The X-global dimension of T is defined by gl. dimy T = sup{pdy A| A € T}. Note that the
discussion in 5.1 shows that the invariants pdy A and gl. dimy T are well-defined. Dually if X is covariantly
finite, the X-injective dimension idy A is defined, and in case X is functorially finite in T, then the existence
of the adjoint pair (X%, Q%) in T/X, ¥n > 0, shows that gl. dimy T = sup{pdy A| A € T} = sup{idx A| A e T}.

Lemma 5.2. Let A be in T. Then we have the following.
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(i) If pdy A =m < o0, then Ae X x X[1] x--- X[m].
(il) If X is n-rigid, then for any m < n we have: pdy A < m if and only if Ae X «X[1] *---X[m].
(iii) If X is n-rigid, and pdyy A = m <n, then Ae X ie. T(XAl]) =0,1<i<n—m.

n—m?’

Proof. Part (i) follows from Proposition 3.2 and part (ii) follows from Proposition 4.2.

(ili) Since pdy A = m, it follows that A € X » X[1] % -- - « X[m]. Then there exists a triangle Xyg — A —
B — Xj[1], where X € X and B € X[1] * X[2] » - - - « X[m]. It follows that B[i] € X[i + 1] * --- » X[m + 4]
and this implies that for 1 < ¢ < n —m we have T(X, B[i]) = 0 since X is n-rigid and m < n. Then applying
T(X, —) to the above triangle we see directly that T(X, A[i]) =0, 1 <i<n—m. O

By Corollary 5.2 we have that if X is n-rigid, then gl. dimy T < m if and only if QF(A) € X, VA € T if and
only if Gh" "1 (4, =) =0, YA € T, if and only if T = X » X[1] * - -  X[m].

Corollary 5.3. Let T be a non-trivial triangulated category and X a contravariantly finite n-rigid subcategory
of T, where n = 1. Then gl.dimy T = n, and gl.dimy T = n if and only if T =X x X[1] x--- x X[n].

Proof. We may assume that gl.dimy T = m < o, and let m < n. Then we have that Qf(A) e X, VAe T
and therefore 7 = X » X[1] » - - -« X[m]. Since m < n, X is m-rigid and then by Theorem 4.7 we have that
X1 = 0. Since pdy A[t] < m, ¥t > 0, it follows by Lemma 5.2 that A[t] € X} _,,. This clearly implies that
A e X ., and therefore A = 0. This contradiction shows that gl.dimy T > n. Moreover by Lemma 5.2 we
have gl.dimy T = n if and only if T = X » X[1] % - - - * X[n]. O

We use the above results to construct certain exact sequences in mod-X which will be useful later on.
Theorem 5.4. Let 1 <t < n and X be a contravariantly finite subcategory of T such that
T(X,X[i]) =0, Vie[—t+1,t]\{0} (%)
(i) For any Ae X[ {[t] n X{ there is a short exact sequence
0 — H(A) — H(Ey) — H(E) — 0

where Eq, By € X/ [t + 1].
(i) For any A€ (X + X[1]* -+ X[t]) n X[ [t + 1], there is an ezact sequence

0 — HX") — HX"YH) — -on. — HXYH — HXY% — HA) — 0
where the X*, X; lie in X and pd H(A) < t.
The split the proof into two steps.

Proposition 5.5. Let n = 1 and X be a contravariantly finite n-rigid subcategory of T. Then for any object
Ae X/ [t], 1 <t < n, there exists a triangle

A— Ey — E; — A[l]

where Eg, By € X[ [t + 1] and the sequence 0 — H(A) — H(Ey) — H(E1) is exact. In particular if, in
addition, A € X{, then there erists an evact sequence

0 —> H(4) — H(Ep) — H(E}) — 0
Proof. Case n = 1: Then condition (*) reduces to T(X,X[1]) = 0, i.e. X < X]. Since, by Proposition 4.2,
we have T(X, Q3. (4)[1]) = 0, it follows that Q3.(A) € X{, VA € T. For any X € X, consider the triangle
Qx(X[-1D[1] — Cello(X[-1])[1] — X — Qx(X[-1])[2] (5.1)
where Cellp(X[—1]) = X%[fl] € X € X]. Applying H and using that X € X], we have an exact sequence
0 — H(X) — H(Qx (X[-1])[2]) — H(Cello(X[-1])[2]) — 0
Then the assertion follows by setting Ey = Q. (X[—1]) and E; = Cello(X[—-1]).

Case n > 2: Let Ae X[ {[t], ie. T(X, A[-1]) = T(X,A[-2]) = --- = T(X, A[—t + 1]) = 0. Consider the
triangle arising from the tower Cell o[_]:

Q5 (A[-1][t — 1] — Cell;_1(A[-1]) — A[-1] — Q4 (A[-1])[t]
Setting Q4 (A[—1]) := B and C = Cell;_1(A[—1])[1]), we have a triangle
B[t] — C— A— B[t +1]
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and, by Proposition 4.2, we know that B € X[ and C' € X[1] « X[1] % --- x X[t]. Applying H to this triangle
and using that H(C') = 0, we have an exact sequence

0 — HA) — H(B[t + 1]) — H(C[l])
where by construction we have B[t 4+ 1] € X/ [t + 1]. Now applying the functor H to the triangles
B[1] — C[-t + 1] — A[-t+ 1] — B[2]
B[2] — C[-t + 2] — A[-t + 2] — BJ3]
B[t] —>C—>A—>B[t+1]
1

and using that T(X, A[—i]) =0, 1 <i<t—1, and T(X, B[j]) =0, 1 £ j < t, we have:

TX,C[—t+1]) =T(X,C[-t+2]) =T(X,C[-t+3]) =--- = T(X,¢t[-1]) = T(X,C) =0
This means that C[—t] € X, and therefore C[1] € X[t + 1]. Now the assertion follows by setting Ey =
Q4 (A[—1]) = B and E; = Cell,_1 (A[-1])[2] = A[1]. O

Proposition 5.6. Let X be a contravariantly finite n-rigid subcategory of T, n > 1. Assume that X < X[ 4[],
if2<t<n. If Alies in (X X[1] % -+« X[t]) n X/ [t + 1], then Q4(A) € X and pdH(A) < t.

Proof. If t = 1, then since A € X » X[1], there exists a triangle Xg — A — X;[1] — Xy[1], where
the X, lie in X. Applying H and using that T(X, A[-1]) = 0 = T(X, X[1]), it follows that the sequence
0 — H(X;) — H(X(y) — H(A) — 0 is exact. This means that pd H(A) < 1 and the map X — A is a
right X-approximation of A, so its cocone X; € X can be chosen as Q3. (A4). If 2 < ¢t < n, then Corollary 3.12
shows that Q4 (A) € T and Ext'™' (H(A),H(B) = 0, VB € T. Hence pd H(A) < t. O

6. CLUSTER-TILTING SUBCATEGORIES

Let as before T be a triangulated category and X a full subcategory of T which is closed under direct
summands and isomorphisms. The results of section 5 show that if X is contravariantly finite and satisfies X =
X, then X enjoys special properties. In this section we give several characterizations of such subcategories.

First we observe the following symmetry.

Proposition 6.1. Let X be a full subcategory of T, and n = 1. Then the following are equivalent:
(i) X is contravariantly finite and X = X .

(ii) X is contravariantly finite and both X and X are n-rigid.

(iii) X is covariantly finite and X = | X.

(iv) X is covariantly finite and both X and | X are n-rigid.

Proof. (i) = (ii) and (iii) = (iv) The proof trivial.

(ii) = (i) < (iv) Assume that (ii) holds. Since X is n-rigid, we have X < X. Let A be an object of T
and consider the associated tower of triangles (C'%). By Proposition 4.2, the map w’} ™" : A — Q% (A)[n] is
a left X [n]-approximation of A. If A lies in X, then since the latter is n-rigid it follows that w~* = 0 and
therefore w2 factorizes through the left cone X’y [n —1] of Ay *[n —1]. Since both A and X! lie in X}
and the latter is n-rigid, it follows that T(A, X3~ '[n — 1]) = 0 and this implies that w~2 = 0. Continuing
in this way after n — 1 steps we deduce that w} = 0 and therefore the map w9 factorizes through the left
cone X}4[1] of hY[1]. Since both A and X} lie in X} and the latter is n-rigid, we have T(4, X}[1]) = 0 and
this implies that h% = w9 = 0. Then A lies in X as a direct summand of X4. Hence X;] € X and therefore
X = X,}. The proof that (iv) = (i) is dual to the proof of the implication (ii) = (i) using cocellular towers,
cf. 2.2, and is left to the reader.

(i) = (iii) Let X = X. By Proposition 4.2 we know that X, [n] is covariantly finite. Let A be in T and
let wgfnl] : A[n] — Q% (A[n])[n] be a left X [n]-approximation of A. Then clearly the map wf‘fnl] [—n] :
A — Q% (A[n]) is a left X, -approximation of A, so X} is covariantly finite. Since X = X, the last map is
a left X-approximation of A and therefore X is covariantly finite in T. Since X is n-rigid, we have X < [ X.
Let A be in [ X. Consider the map w’i ' : A — Q% (A)[n]. Then Q% (A)[n] € X[n] and therefore ;' = 0
since A € | X. Hence w2 o ;™' [n — 1] = 0 and therefore w’;~" factors through the left cone X} ~'[n — 1] of
A"~ [n — 1], say via a map A —> X37![n — 1]. Since A € )X, the last map is zero and therefore w2 = 0.
Continuing in this we deduce after n — 1 steps that w! = 0 and therefore w% o h4[1] = 0. Then wY factorizes
through the left cone X[1] of h4[1]. However T(A, X}[1]) = 0, since A € [ X. This implies that A% = w9
and therefore A lies in X as a direct summand X9. Hence ] X € X and therefore X = | X. O
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Definition 6.2. [21, 16] A full subcategory X of 7T is called a (n + 1)-cluster tilting, n > 1, if:
(i) X is functorially finite.
(i) X={AeT|T(X,A[{]) =0, 1 <i<n}, ie X=X .
(iif) X ={AeT|T(4,X][:]) =0, 1<z<n}, ie. X=X

Now we can prove the main result of this section which, among other things, gives several convenient
characterizations of (n + 1)-cluster subcategories.

Theorem 6.3. Let X be a full subcategory of T, and n = 1. Then the following are equivalent.

(i) X is a (n + 1)-cluster tilting subcategory of T.

ii) X is contravariantly finite and X = X} .

ii) X is covariantly finite and X = [ X.

v) X is contravariantly finite and both X and X,| are n-rigid.

v) X covariantly finite and both X and [ X are n-rigid.

) X is contravariantly (or covariantly) finite n-rigid and: gl.dimy T = n.
) *
)

)

)

)

(
(i
(i
(
(vi
(vii

X is contravariantly (or covariantly) finite n-rigid and: T =X » X[1] x--- = X[n].
(viil) X is contravariantly (or covariantly) finite n-rigid and: GhU"*1(T) = 0.
(ix) X is contravariantly (or covariantly) finite n-rigid and, VA e T: Q% (A) e X.
(x) X is covariantly (or contravariantly) finite n-rigid and, YA€ T: Y% (A) e X.
(xi) X is contravariantly finite n-rigid, any object of X [n + 1] is injective in mod-X and the functor
H: X [n+ 1] — mod-X is full and reflects isomorphisms.
If X is a (n+1)-cluster subcategory of T, then the abelian category mod-X has enough projectives and enough
injectives, the functors X[n + 1] — mod-X «— X are fully faithful and induce equivalences

X[n+1] = Injmod-X and X = Projmod-X
By Proposition 6.1 and the results of sections 4 and 5, the first ten conditions are equivalent. So to
complete the proof, it remains to show that (xi) is equivalent to (i). This requires several steps.
Lemma 6.4. Let X be a contravariantly finite n-rigid subcategory of T. If Ae X+« X[1]x---xX[k], 0 < k < n,
and B € T is such that T(X,B[—i]) =0, 1 <i< k —1, then :
Ghy (Q3(A), B) =0
and the map Ha g : T(A, B) — Hom (H(A),H(B)), f > H(f), is surjective.

Proof. Since A € X * X[1] x --- * I)C[k;] k < n, it follows easily that Q4 (A) € X and then by induction we
infer that Q3 (A4) € X * X[1] * - -- * X[k — 1]. Hence there is a triangle X — Q.(4) — C — X[1], where
XeXand C e X[1] »---* X[k —1]. Let o : Q}(A) — B be an X-ghost map. Then the composition
X — QL (A) — B is zero, hence Q}.(A) — B factorizes through Q% (A) — C. Since any map from an
object from X[1]*- - -« X[k—1] to an object B satisfying T(X, B[—i]) = 0, 1 < ¢ < k—1, is clearly zero, it follows
that T7(C, B) = 0. This implies that the map Q}.(4) — B is zero and consequently th(Ql (4), B) =0. O

Corollary 6.5. Let X be an (n + 1)-cluster tilting subcategory of T. Let B € T be such that T(X, B[—i]) = 0,
1<i<n—1. Then for any object A € T, there exists a short exact sequence

0 — Ghi"(4,B) — T(A,B) — Hom[H(A),H(B)] — 0
If, in addition, T(X, B[—n]) = 0, then the map Ha g is invertible.

Proof. By Lemma 6.4, with k = n, we have th(Q%C(A), B) = 0, hence by Proposition 3.6 the map Hx p is
surjective. We show that Ghy (A4, B) = KerHa p = th?](A,B). Let o : A — B be such that H(a) = 0,
i.e. «ais X-ghost. Then « factorizes through hl : A — Q3.(A4)[1], say via a map 3 : Q3. (4)[1] — B.
Since Q. (A4)[1] € X[1] * X[2] * - - » X[n], there are triangles X;[i] SN VRN Nit1 — X;[i + 1], for
1 <i<n—1,where Ny = QY. (4)[1], X1 € X and M; 1 € X[i+1]*---*X[n]; in particular M,, = X,,[n], where
X, € X. Since T(X, B[—1]) = 0, we have [; o 8 = 0, and therefore 5 = & o 82 for some map Sy : N — B.
Using that T(X, B[—i]) =0, 1 < i < n—1, by induction there exists a factorization § = & 0&30-+-&,_1 00y,
where £, : X, [n] — B. Since M; € X[i] » ---X[n] and since clearly any map from an object of X[i] to
an object in X[¢ + 1] * ---X[n] is zero, the map & : M; — M;;1 is DC[] -ghost. In particular the map
w108 : M, 1 —> Bis DC[n — 1]-ghost. Since a = hlyo3=hY o0& o0& o0&, 10p,, it follows that a lies
in Ghl™ (4, B), hence KerH, 5 = GhE(A, B). Since clearly GhE (A, B) < Ghy(A, B), the assertion follows.
If in addition T(X, B[—n]) = 0, then the map /S, is zero. So a = 0 and then th?](A, B) =0. O
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Since any object B € X[n + 1] satisfies the assumptions of the above Corollary we have the following.
Corollary 6.6. For any object A€ T and any object X € X, we have an isomorphism
Haxpi1) @ TA X[n+1]) = Hom (H(A),H(X[n +1]))
In particular the functor H : X[n 4+ 1] — mod-X is fully faithful.
The following result gives the implication (i) = (ix) in Theorem 6.3.

Proposition 6.7. Let X be an (n + 1)-cluster tilting subcategory of T. Then mod-X has enough injectives,
and the functor H : T — mod-X induces an equivalence

H @ X[n+1] = Injmod-X

Proof. Recall that by Lemma 2.4 the functor H : T — mod-X is almost full, i.e. setting A* = Cell;(A), for
any object A € T, we have a canonical map v} : A* — A such that H(v}) is invertible and, for any map
i : H(A) — H(B), there there exists a commutative diagram

H(A®) s H(BY)

LNIE = 1ok
H(4) —£— H(B)

Let fi : H(A) — H(B) be a monomorphism in mod-X and let & : H(A) — H(X[n + 1]) be a map, where
X € X. Clearly the map H(p) is a monomorphism, so if C' — A* — B* — (C[1] is a triangle in T, then
the map C — A* is X-ghost and therefore it factorizes through X7 = X[1] % - - » X[n]. By Corollary 6.6,
there is a map a : A — X[n + 1] such that H(a) = @&. Since any map from an object of X[1] x - - * X[n]
to an object of X[n + 1] is clearly zero, it follows that the composition C — A* — A — X[n + 1] is
zero and therefore v} o o factorizes through p, i.e. 74 o = pop for some map p : B* — X[n + 1].
Then we have H(v}) o H(a) = H(p) o H(p) and therefore H(v}) o H(a) = H(v}) o i o H(7L) ™! o H(p), hence
H(a) = io H(v5)~! o H(p). This shows that H(X[n + 1]) is injective, Y X € X.

We show that any object H(A) of mod-X is a subobject of an object from H(X[n + 1]). There is a map

i A— QR (A[-1])[n + 1] and a triangle

wfx[—u
Qv (A[-1]) — Cell,—1(A[-1]D[1]] — A — QY (A[-1]D[rn +1]

where by construction Cell,_1 (A[—1])[1] lies in X[1]*- - -xX[n]. Since Q% (A[—1]) € X, we have Q% (A[—1])[n+
1] € X[n + 1]. Hence H(Q%(A[-1])[n + 1]) is injective in mod-X, and the map H(wz[__ll]) : HA) —
H(Q% (A[—-1])[n + 1]) is a monomorphism, since H(X[1] x--- % X[n]) = 0. hence mod-X has enough injectives.

Now let H(A) be an injective object of mod-X. By the above there exists a split monomorphism H(pu) :
H(A) — H(X[n + 1]), where X € X. Hence there exists a map & : H(X[n + 1]) — H(A) such that
H(u) o & = 1y(a). Now the map & o H(u) is an idempotent endomorphism of H(X[n + 1]) and therefore since
the functor H : X[n+1] — mod-X is fully faithful, there exists an idempotent endomorphism e : X[n+1] —
X[n + 1] such that H(e) = & o H(p). Since idempotents split in T, there exist maps « : X[n + 1] — D and
A D — X[n+1] such that e = koA and Aok = 1xp,41]- Clearly D is of the form X'[n+1], for some object
X" e X, as a direct summand of X[n+1]. We claim that the map ¢ := H(u)oH(k) : H(A) — H(X'[n+1])
is an isomorphism with inverse the map v := H(\) o &. Indeed we have:

potp =H(p)oH(k) oH(A)oa = H(u) oH(k o A) o0& = H(u) oH(e) o & = H(p) oo H(p) o & = 1py(a)
Po¢=HA)oaoH(u)oH(k) =H(A)oH(e) o H(k) = H(A) o H(k) o H(A) o H(%) = Tn(x/[nr1))
Hence the functor H : X[n + 1] — Injmod-X is surjective on objects and therefore an equivalence. O
Finally the next result shows the implication (ix) = (i) and completes the proof of Theorem 6.3.

Proposition 6.8. Let X be a contravariantly finite n-rigid subcategory of T. If the functor H: X} [n+1] —
mod-X has image in Injmod-X, is full and reflects isomorphisms, then X is (n + 1)-cluster tilting.

0
Proof. Tt suffices to show that XJ < X. Let A € X and consider the triangle QL (4) 2% X9 —
A — QY (A)[1]. Applying H and using that X is n-rigid and T(X, A[i]) = 0, 1 < i < n, it follows that
T(X, Q% (A)[i]) =0, 1 <i < n, so Q4 (A) € X, and we have a monomorphism H(g%[n + 1]) : H(Q.(A)[n +
1]) — H(XG[n+1]). On the other hand since X < X it follows that X9 [n+1] € X [n+1]. Since the objects
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H(QL (A)[n+1]) and H(X4[n+1]) are injective in mod-X, the above monomorphism splits. Since by hypothe-
sis H|xr[,117 is full and reflects isomorphisms, this implies that the map ¢4 [n+1] : Q% (A)[n+1] — X§[n+1],
or equivalently the map Q3.(A4)[1] — X4[1], is split monic. Then the map A — QX.(A4)[1] is zero and
therefore A lies in X as a direct summand of X4 € X. Hence X, = X. O

From now on let X be a (n + 1)-cluster tilting subcategory of T, where n > 1.
Corollary 6.9. The abelian category mod-X is Frobenius if and only if X = X[n + 1].

Corollary 6.10. There exists a torsion triple:
(DC[k—n]*-~-*9C[k—2]*9C[k—1], X[k], X[k+1]*X[k+2]*---*9C[k+n])7 VkeZ

Proof. Since X,, = X, by Proposition 4.2 there is a torsion pair (X » X[1] x --- » X[n — 1],X[n]) in T.
Clearly then (X[k —n] * -+ » X[k — 2] » X[k — 1], X[k]) is a torsion pair in T, Vk € Z. The proof that
(X[K], X[k + 1] % X[k + 2] - - - » X[k + n]) is a torsion pair in T is dual, using cellular cotowers, see 2.2. [

We denote by Ko(X,®) the split Grothendieck group of the exact category X endowed with the split exact
structure and by Ko(7) the Grothendieck group of T. If n = 1, so that X is a 2-cluster tilting subcategory,
and if T is algebraic, then Palu [25] proved that Ko(7) is a quotient of Ko(X,®) by a certain subgroup. In
our case we have the following for n > 2 and for arbitrary 7.

Corollary 6.11. The inclusion X — T induces an epimorphism: Ko(X,@®) — Ko(T) — 0.

Proof. Clearly the inclusion i : X — T induces an homomorphism Kg(7) : Ko(X,®) — Ko(T), by Ko (3)[X] =
[X]. Let A be in T and consider the triangle QL (A) — X4 — A4 — QL (A)[1]. Then in K(T) we have
a relation [A] = [X9] — [2%.(A4)]. Similarly the triangle Q3. (4) — X} — Q}.(4) — Q% (A)[1] gives the
relation [Q4.(A)] = [X}] — [23.(A4)] and therefore we have [A] = [X%] — [X4] + [Q%(A)]. Continuing in this
way we have a relation in Ko(T): [4] = Z;:Ol(—l)i[X};‘] +(=1)"[Q2%(A)]. By Theorem 5.3 we have Q% (A) :=
X% € X, hence [A] = X1 ,(—1)"[X7%]. Hence [A] = Z?:O(—l)ZKO(i)([XQ]) = Ko(i)(Z?:O(—l)’[Xﬁ]), i.e. for
any object A in T, the generator [A] lies in the image of K¢ (¢), This clearly implies that Ko(7) is surjective. [

7. CERTAIN CLUSTER TILTING SUBCATEGORIES ARE (GORENSTEIN

Our aim in this section is to show that a special class of (n+ 1)-cluster tilting subcategories, called (n —k)-
strong (n + 1)-cluster tilting subcategories, of an arbitrary triangulated category, where n > 2k — 1, enjoys
the property that the associated cluster tilted category mod-X is k-Gorenstein.

Main examples include all 2-cluster tilting subcategories and all (n + 1)-cluster categories of associated to
a finite-dimensional hereditary algebra over a field.

7.1. Gorenstein Categories. Let ./ be an abelian category with enough projectives and enough injectives.
We recall from [12] the following invariants attached to «7:

silpe/ = sup{id P | P € Proj.«/},  splieZ =sup{pdI|I € Injo/}
G-dim &/ := max {silp#/, spli« }

We call G-dim .« the Gorenstein dimension of &/ and then & is called Gorenstein if G-dim«/ < oo. If
G-dim o/ < n < o, then we say that <7 is n-Gorenstein.

Lemma 7.1. Let </ be an abelian category with enough projectives and enough injectives. Assume that
splieZ < o and silp.e/ < oo. Then < is Gorenstein of dimension G-dim .o/ = spli.e/ = silp 7.

Proof. Let splie/ = n < o and silpsZ = m < o. If m = 0, then any projective object of & is injective,
and since any injective has finite projective dimension, bounded by n, it follows that any injective object is
projective, i.e. n = 0. Dually if n = 0 we have m = 0. In both cases &/ is Frobenius, i.e. & is Gorenstein
of dimension G-dim.«/ = 0. Now let n > m > 0, so n = 2. Since spli&/ = n there exists an injective object
I such that Q"7 is not projective, so Extl, (Q" 11, —) # 0. Hence there exists an object A € </ such that
Ext™ (I, A) = Extl, (Q"'I,A) # 0. Let 0 — Q(A) — P — A — 0 be exact where P is projective.
Evaluating the exact sequence of functors --- —» Extl (-, P) — Extl,(—, A) — Ext,(—,QA) — --.
at Q"~'I and using that Ext?, (Q"~'I,QA) =~ Ext”'(I,QA) = 0 since pd I < n, we get an epimorphism
Extl, (Q"~'I,P) — Extl,(Q"~'I,A) — 0. Hence Ext", (I, P) = Ext.,(Q" I, P) # 0. This shows that
m = id P > n and this is not the case. Dually if m > n, then we arrive at a contradiction. This shows that
n = m and therefore o/ is Gorenstein of Gorenstein dimension G-dim &/ = spli ./ = silp <. O
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7.2. Strong Cluster Tilting Subcategories. Let as before T be a triangulated category with split idem-
potents and X a full subcategory of T closed under direct summands and isomorphisms.
Then we have a chain of extension closed full subcategories of T
- S Xpq[n] € X)on—1] € XJ[3] € X{[2] € XG[1]=X[2]*X[3]*---*»X[n+1] (%)
where, as easily seen: X[t +1]={AeT | T(X,A[-k]) =0, 1 <k <t}
Clearly if X is (n + 1)-cluster tilting, then: X!, ;[n+2] =0 and X[n+1] =X][n+1].

Definition 7.2. A full subcategory X of T is called t-strong, where t > 1, if:
X < X[ [t+1], ie TOXX[-1])=---=T(XX[-t]) =0
The following gives a convenient characterization of when a cluster tilting subcategory is t-strong.

Proposition 7.3. If X is (n + 1)-cluster tilting, then for 1 <t < n, the following are equivalent:

(i) X is t-strong.
(i) X[n+1] € X« X[1] *--- X[n —t].

Proof. (i) = (ii) We know that T = X » X[1] » - - - * X[n] and therefore X[n + 1] € X * X[1] % -- - x X[n]. Hence
for any object X € X, there exists a triangle A — X[n+1] — B — A[1], where A € XxX[1] *---*X[n—{]
and Be X[n—t+ 1] »---xX[n]. Now the hypothesis (ii) implies that any map from an object from X to an
object from X[—t] x - -- « X[—1] is zero and this trivially implies that any map from an object from X[n + 1]
to an object from X[n —t + 1] » --- » X[n] is zero. It follows that the map X[n + 1] — B is zero, hence
X[n+1] lies in X+ X[1] » -+ - X[n — t] as a direct summand of A.

(ii) = (i) The hypothesis implies that X € X[-n—1]*X[—n]*---*X[—t—1]. Hence for any object X € X,
there exists a triangle A — X — B — A[1], where Ae X[-n — 1] x--- x X[t —1]. Let 1 < k <t and
consider any map X — X'[—Fk], where X’ € X. The composition A — X — X'[—k] is zero since it lies
in T(X,X[n + 1 — k]. Hence the map X — X'[—k] factorizes through the map X — B. However using
that 1 < k < ¢, it follows easily that any map from an object from X[—n] * - - * X[—t — 1] to an object from
X[—k] is zero. Hence the map X — X'[—k]) is zero, i.e. T(X,X[-k]) =0, 1<k <t O

Corollary 7.4. Let X be an (n — k)-strong (n + 1)-cluster tilting subcategory of T, where 0 < k <n — 1.

(i) X[n+t+1] € X[E]*X[t+1]*---*X[t+ k], VteZ
(i) T, X[n+t+1]) =0, forl<t<n—k.

Proof. By Proposition 7.3 we have X[n +1] € X+ X[1] »---» X[k] and (i) follows. Now T(X, X[n +t + 1]) is
contained in X[t] *---*X[n+k] and clearly X[t]*---*X[n+k] S X[1]*---*X[n] = X" for 1 <t <n—k. O

7.3. Gorensteinness of Strong Cluster Tilting Subcategories. Let X be an (n + 1)-cluster tilting
subcategory of T, where n > 1. Let 0 < k < n—1 we say that X is strictly (n — k)-strong if X is (n — k)-strong
but X is not (n — k + 1)-strong. Our main aim in this section is to prove the following result. Note that (i) is
due to Keller-Reiten [21] and the case k = 1 in (iii) was observed independently by Iyama-Oppermann [17].

Theorem 7.5. Let X be an (n + 1)-cluster tilting subcategory of T, where n = 1.

(i) If n =1, then G-dimmod-X < 1.
(ii) G-dimmod-X = 0 if and only if X is n-strong.
(iii) Assume that n = 2 and X is (n — k)-strong, where 0 < k < n — 1. Then:

n+1

0 <k <
2

G-dimmod-X < k

In particular:
(a) Ifn is odd and X is (“5%)-strong, then: G-dimmod-X < 2.

(b) If n is even and X is (“41)-strong, then: G-dimmod-X < 25*.

Moreover if X is strictly (n — k)-strong, then: G-dimmod-X = k.

We split the proof of Theorem 7.5 into three steps as Propositions 7.7, 7.8 and 7.9.



22

7.3.1. Finiteness of splimod-X. We first investigate when splimod-X < 0. We begin with the reformulation
of Theorem 5.4.

Proposition 7.6. Let X be a contravariantly finite subcategory of T and A€ 7.
(i) If X is 1-rigid and A € (X » X[1]) n X{[2], then: pdH(A) < 1.
(ii) Let t = 2 and assume that X is (t — 1)-strong and t-rigid. Then:

Ae (XxX[1]*---*X[t]) n X[t +1] = pdH(A) <t
The next result proves half of Theorem 7.5.

Proposition 7.7. Let X be an (n + 1)-cluster tilting subcategory of T, wheren = 1. Let 0 < k <n —1 and
assume that X is (n — k)-strong. Then splimod-X < k provided that n > 2k — 1.

Proof. If X is n-strong, then clearly X[n + 1] = X,| = X and therefore any injective object of mod-X is
projective. Hence splimod-X = 0. Assume that X is (n — 1)-strong. If n = 1, then the condition 0-
strong is vacuous, but X[n + 1] € X » X[1], since T = X % X[1]. Hence for any X € X, there exists a
triangle X! — X% — X[2] — X![1], where X!, X! € X, This clearly implies that pd H(X[2]) < 1, i.e.
splimod-X < 1. If n > 2, then by Proposition 1.3 we have X[n + 1] € X » X[1] and clearly X[n + 1] € X{[2].
Then by Proposition 1.2 we have pd H(X[n + 1]) < 1, ¥X € X. Hence splimod-X < 1. If X is (n — 2)-strong
and n > 3, then by Proposition 1.3 we have X[n + 1] € X + X[1] * X[2], and clearly X < XJ [3], since n > 3.
Then by Proposition 7.6 we have pd H(X[n + 1]) < 2, VX € X. Hence splimod-X < 2.

Continuing in this way assume that X is (n — k)-strong, where 2 < k < n — 1. By Proposition 7.3
then we have X[n + 1] € X * X[1] » --- = X[k]. Since clearly X[n + 1] € X[k + 1], we have X[n + 1] S
(XxX[1]*- - -* X[k]) n X[ [k +1]. Our assumption n = 2k —1 gives n—k > k—1, so the chain of subcategories
(x) shows that X ,[n —k + 1] € X]_,[k]. Since X is (n — k)-strong, it follows that X € X! _, [n —k + 1]
and therefore X < X ,[k], i.e. X is (k — 1)-strong. Then Proposition 7.6 gives us that pd H(X [n + 1]) < k,
VX € X. We infer that splimod-X < k. O

7.3.2. Finiteness of silpmod-X. Now we turn our attention to the investigation of when silp mod-X is finite.
The following result combined with Proposition 7.7 proves the other half of Theorem 7.5.

Proposition 7.8. Let X be an (n + 1)-cluster tilting subcategory of T, wheren = 1. Let 0 < k <n —1 and
assume that X is (n — k)-strong. Then silpmod-X < k provided that n > 2k — 1.

Proof. Let X € X be an arbitrary object. We shall show that id H(X) < k. For the convenience of the reader
and to make the proof more transparent, we first treat the cases 0 < k < 2.

Case k = 0. Let first k = 0, i.e. X is n-strong. Then clearly we have X[n + 1] = X = X, so by Corollary
6.9, mod-X is Frobenius and then G-dim mod-X = 0.

Case k = 1. Now assume that n > 1 and k = 1, so X is (n — 1)-strong. First we treat the case n = 1.
Then the condition O-strong is vacuous. For any X € X we have a triangle

Qx(X[-1]) — Cellg(X[-1]) — X[-1] — Qx(X[-1])[1]
where Q% (X[—1]) := X € X and Celly(X[—1]) := X € X. Then we have a triangle
X — X7[2] — X{[2] — X[1]
which induces a short exact sequence
0 — H(X) — H(X§[2]) — HX{[2) — 0

and the objects H(X{[2]), H(X{¥[2]) are injective in mod-X. Hence id H(X) < 1 and therefore silp mod-X < 1.
Now assume that n > 2 and therefore we have: T(X,X[—i]) =0, 1 < ¢ < n — 1. Consider the triangle
arising from the tower Cellx|_1:

QYX[-1D[n — 1] — Cell,—1 (X[-1]) — X[-1] — Q% (X[-1])[n]
Setting Q% (X[—1]) := X§ and C; = Cell,_1(X[—1])), we have a triangle
Xin] — Ci[1] — X — X*[n+1] (7.1)
=0

and we know that X e X and C € X« X[1] x---»X[n —1]. Applying H to (7.1) and using that H(C:[1])
and the fact that X is (n — 1)-strong, so T(X, X[—i]) =0, 1 < i < n — 1, we have an exact sequence

0 — H(X) — H(X#[n+1]) — H(C1[2]) — 0 (7.2)
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and H(C1[—i]) = 0, for —1 < i < n—2. It follows that for the object Cy[—n+1] we have T(X, C1[—n+1][1]) =
T(X, Ci[—n + 1][2]) = - - = T(X, Ca[=n + 1][n]) = 0, i.c.

o ef)CI[n—l] = X[n —1]

It follows that C1[2] € X[n + 1]. We infer that the object H(C1[2]) is injective in mod-X and therefore the
short exact sequence (7.2) is an injective coresolution of H(X), i.e. idH(X) < 1. Hence silpmod-X < 1.

Case k = 2. Next assume that n > 3 and k = 2, so X is (n — 2)-strong. Equivalently T(X, X[—i]) = 0,
1 <i<n—2. Then as above we have a triangle

X — Xf[n+1] — C1[2] — X[1] (7.3)
where X§ € X and C; € X » X[1] * - - - x X[n — 1], such that the following sequence is exact:
0 — HX) — H(X(j"[n+1]) — H(Cl[Q]) — 0

Applying H to (7.3) and using that C1[1] € X[1] x---* X[n] and the fact that X is (n — 2)-strong, the induced
long exact sequence shows that T(X, Ci[1]) = T(X,C1) = T(X, Ci[-1]) = --- T(X,Ci[-n + 3]) = 0, i.e.

Cl S lel[n — 2]
Now consider the object C7[2] and let
Q(Ci1D[n = 1] — Cell,1 (C1[1]) — Ci[1] — Qi (Ci[1])[n]
be the triangle arising from the tower Cellg,[2j—1] = Cellg,[1]- Setting Q% (C1[1]) := X and Cp :=
Cell,,—1(C1[1]), we have a triangle
Ci2] — Xf[n+1] — 2] — C1[3] (7.4)
where X € X and C1,Cs € X« X[1] % - - -« X[n — 1]. We claim that H(C1[3]) = 0 and C5[2] € X[n + 1]. First
note that since X is (n—2)-strong, by Proposition 7.3 it follows that X[n+1] € X« X[1]*-- -« X[n—(n—2])] =
X x X[1] * X[2]. Hence X[n + 2] < X[1] * X[2] * X[3] € X[1] *» X[2] * -+ *» X[n] = XT. Since n > 3, it follows
that H(X[n + 3]) = 0 and therefore applying H to the triangle (1.2) we infer that H(C;[3]) = 0. On the other
hand applying H to the triangle (7.4) and using that X is (n — 2)-strong and Cy € X _;[n — 2], we see that
T(X,C2[—i]) = 0, =1 < i < n — 2. This means that Co[—n + 1] € X,] = X and therefore
CyeX)[n—1]=X[n—1]
It follows that C2[2] € X[n + 1]. Therefore the triangle (7.4) induces a short exact sequence
0 — H(C1[2]) — H(X{[n+1]) — H(C3[2])) — 0

where the object H(C2[2]) is injective in mod-X. We infer that the exact sequence

0 — H(X) — H(X{[n+1]) — H(X{[n+1]) — H(C:[2]) — 0

is an injective resolution of H(X) and therefore id H(X) < 2. Hence silp mod-X < 2.
Case k < n — 1. Now we treat the general case, so assume 0 < k <n —1 and n > 2k — 1. Working as
above we may construct triangles

X — Xtn+1] — O1[2] — X[1] (7.5)
2] — XF¥[n+1] — Co[2] — Ci[3] (7.6)
Ck_1[2] — X,ffl[n+1] —_— Ck[2] —_— Ck_1[3] (77)

where X* € X, for 0 < i < k—1, and C; € X« X[1] » --- « X[n — 1], for 0 < ¢ < k. It follows that
Ci[1] € X[1] * X[2] % - -- » X[n] = X, so the above triangles induce exact sequences:

0 — H(X) — H(X{[n+1]) — H(Ci[2]) — O (7.8)
0 — H(C1[2]) — H(X{[n+1]) — H(C:[2]) — H(C1[3])) — --- (7.9)

0 — H(Cy_1[2]) — H(X}_{[n+1]) — H(Ck[2]) — H(Cr_1[3]) — --- (7.10)
Clearly then to show that id H(X) < k, it suffices to show that:
H(Ci[3]) =0, 1<i<k—1 and Cy[2]eX[n+1] (1)
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Since X is (n — k)-strong, by Proposition 7.3 we have X[n 4+ 1] € X * X[1] * - - - » X[k]. It follows that
X[n+i] € X[ — 1] *X[i] x---* X[k +i—1]

and therefore

X[n+i <X, k<n—i+l, 2<i<k-1 (7.11)
Applying H to the triangle (7.5) and Using (7.11) and the fact that C1[1] € XT, we see directly that
H(Ci[=n+k +1]) = --- = H(C1) = H(C1[1]) = H(C1[3]) = --- = H(C1[k]) = 0 (7.12)
Then using (7.12) it follows that (7.9) becomes a short exact sequence
0 — H(C1[2]) — H(X{[n+1]) — H(C:[2]) — 0 (7.13)
and the long exact sequence induced after applying H to the triangle (7.6), gives us
H(Co[—n +k]) = -+ = H(Cy) = H(C,[1]) = H(C2[3]) = --- = H(C2[k —1]) = 0 (7.14)
Continuing inductively in this way we see H(Cj_1[3]) = 0 and
H(Ci[-n+2]) =--- = H(C_,,+1) = H(C:[1]) = 0 (7.15)

This means that Cyx[-n + 1] € X, = X and therefore Cy, € X[n — 1]. Hence Ci[2] € X[n + 1] and the exact
sequence (7.10) becomes a short exact sequence

0 — H(Ci_1[2]) — H(X[_i[n+1]) — H(Ck[2]) — 0 (7.16)
and the object H(C%[2]) is injective in mod-X. It follows that the exact sequence
0 — HX) — HXgn+1]) — HX{f[n+1]) — -+ — HXi[n+1]) — H(G[2]) — 0
is an injective coresolution of H(X) and therefore id H(X) < k. We conclude that silp mod-X < k. O
Finally the next result completes the proof of Theorem 7.5.

Proposition 7.9. Let X be an (n + 1)-cluster tilting subcategory of T, wheren = 1. Let 0 < k <n—1 and
assume that X is strictly (n — k)-strong. If n = 2k — 1, then: G-dimmod-X = k.

Proof. Let X € X. By Proposition 7.7, we have pd H(X [n + 1]) < k. Assuming that pd H(X[n +1]) < k-1,
VX € X, we show that X is (n — k + 1)-strong. If 0 < k < 1, then the assertion is clear. So assume
that k > 2. We consider triangles (73) : A® — X*1 — A1 — A[1], where each map X' ! —
X1 is a right X-approximation, ¢ > 1, and A° = X[n + 1], so that A® = Q% (X[n + 1]). Applying H
to the triangle (T7), we obtain an exact sequence 0 — H(A') — H(X°%) — H(X[n + 1]) — 0 and
T(X, A[—i]) =0, 1 < i < n—k. Using this and applying H to the triangle (75), we obtain an exact sequence
0 — H(A?) — H(X!) — H(A') — 0 and T(X, A%[—i]) =0, 1 < i < n—k—1. Continuing in this way, we
finally obtain an exact sequence 0 — H(A*~1) — H(X*~2) — H(A4*~2) — 0 and T(X, A*~1[—i]) = 0,
1 <i<n—2k+2. Since we assumed that pd H(X[n + 1]) < k — 1, the object H(A*~!) is projective. Hence
there is a map o : X* — A¥~1 where X* € X, inducing an isomorphism H(a) : H(X*) => H(A*1). Let
X* — AF=1 — B — X*[1] be a triangle. Applying H to this triangle and using that X is (n — k)-strong,
the fact that H(«) is invertible, and the vanishing condition T(X, A¥1[—i]) = 0, 1 < i < n — 2k + 2, we
infer that T(X, B[k + 1] = T(X,B[-k +2] = --- = T(X, B[k +n]) = 0, i.e. B[-k] € X] = X. Hence
B e X[k] and this implies that the map B — X*[1] is zero since it lies in T(X, X[—k + 1] and this space
is zero since 1 € k—1 < n—k and X is (n — k)-strong and n > 2k — 1. We infer that AR=1 admits
a direct sum decomposition A*~! =~ X* @ X'[k]. On the other hand, since A*=' = QE(X[n + 1]), we
know by Remark 2.2 that A*~! lies in X  X[1] % -+ » X[k — 1]. Since clearly any map from an object of
X * X[1] * - -+ * X[k — 1] to an object from X[k] is zero, it follows that the projection A¥=! —s X'[k] is zero
and this implies that A*~1 =~ X* € X{. Then A*~2 lies in X » X[1] and using that A® = Q4. (X[n+1]), Vi > 1,
it follows inductively that A' € X » X[1] *--- X[k — 2]. Then X[n + 1] lies in X » X[1] * - -- X[k — 1], hence
X[n+ 1€ X« X[1] »--- X[k — 1]. Then Proposition 7.3 shows that X is (n — k + 1)-strong as required. [

Remark 7.10. Let X be an (n + 1)-cluster tilting subcategory of T, where n > 1. Then Theorem 7.5 gives
the following picture:

o If X is n-strong, then: G-dimmod-X = 0.

o If X is strictly (n — 1)-strong, then: G-dimmod-X = 1.

o If X is strictly (n — 2)-strong and n > 3, then: G-dimmod-X = 2.
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o If X is strictly (n — 3)-strong and n > 5, then: G-dimmod-X = 3.
o If X is strictly (n — k)-strong and n > 2k — 1, then: G-dimmod-X = k.

If X is strictly 3-strong and n < 7, then: G-dimmod-X =

. =n—-3<4
e If X is strictly 2-strong and n < 5, then: G-dimmod-X = n—-2 < 3
e If X is strictly 1-strong and n < 3, then: G-dimmod-X = n—1 < 2
e If n=1, then: G-dimmod-X < 1.

Since for an abelian category &/ we have G-dim.«/ < gl. dim 7, with equality if gl. dim &/ < o0, we have the
following consequence.

Corollary 7.11. Let X be an (n + 1)-cluster tilting subcategory of T, where n > 1. Let 0 < k <n —1 and
assume that X is (n — k)-strong. If n = 2k — 1, then either gl.dimmod-X = oo or else gl. dimmod-X <
Moreover if gl.dimmod-X < o0 and X is strictly (n — k)-strong, then gl.dim mod-X = k.

Corollary 7.12. Let X be an (n — k)-strong (n + 1)-cluster tilting subcategory of T, 0 < k <n —1. Assume
that n = 2k — 1. Then mod-X is Frobenius if and only if T(X,X[-n +k—i]) =0, 1 <i< k.

The next result characterizes strong (n + 1)-cluster tilting subcategory of T in terms of vanishing of the
obstructions groups O_ _

Proposition 7.13. Let X be a (n+ 1)-cluster tilting subcategory of T, where n = 2. Then for 1 <k <n—1,
the following statements are equivalent:

(i) X is (n — k)-strong.

(ii) ODC[—Z'],— =0,1<i<n—k.
In particular if the functor H : T — mod-X is full, then X is (n — k)-strong, for any k with 1 < k <n —1,
and mod-X is 1-Gorenstein.

Proof. (i) = (ii) Since X is (n — k)-strong, we have H(X[—i]) = T(X,X[—i]) = 0, for 1 < i < n— k. This
clearly implies that Ox[_; - =0, 1 <i<n—k.

(ii) = (i) Assume that Ox[_,— = 0,1 <i < n—Fk, ie. the maps T(X[—i]), B) — Hom(H(X[—i]),H(B))
are surjective, VB € T, VX € X. For X € X, consider the triangle

Q(X[=1][n = 1] — Cell, 1 (X[-1]) — X[-1] — Qx(X[-1])[n]

arising from the cellular tower of X[—1]. Then we know that Q% (X[—1]) € X and Cell,,_1(X[-1]) € X *
X[1] * -+ » X[n — 1]. Setting X* := Q% (X[-1]) € X and C := Cell,,_1 (X[-1])[1] € X[1] * X[2] * - - - » X[n],
we have, by Proposition 4.2, that H(C') = 0 and moreover there is a triangle

X*n] 5 ¢ %5 X L X*n+1] (T)
Applying H to the triangle (7") and using that H(X*[i]) = 0, 1 < i < n, we get isomorphisms in mod-X:
H(a[—i]) : H(C[-i]) = H(X[-i]), 1<i<n-1 (7.17)

Since Ox[—q,c[—i] = 0, 1 <i < n —k, there are maps §; : X[—i] — C[—i] in T, 1 <4 < n — k such that:

~

H(5;) = H(a[—i])™" : H(X[-i]) = H(C[-i]), 1<i<n—k (7.18)

Then the map 6;[¢] : X — C lies in T(X, C) and this is zero since H(C') = 0. Hence §;[¢] = 0 and therefore
0; = 0,1 < i< n—k. Then the isomorphisms H(J;) are zero and this implies that H(C[—i]) = H(X[—i]) = 0,
ie. T(X, X[-i]) =0,1 <3< n—k. Since X is an arbitrary object of X, we infer that T(X, X[—i]) = 0,
1 << n—k and consequently the (n + 1)-cluster tilting subcategory X is (n — k)-strong.

If H is full, then O; _ = 0, in particular Ox[_;,— =0, 1 <4 < n — 1. Then by (i), X is (n — 1)-strong and
therefore mod-X is 1-Gorenstein by Theorem 7.5. g
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7.4. Keller-Reiten’s Morita Theorem for the (n + 1)-Cluster category. We use the results of subsec-
tion 7.3 to give an application to the characterization of the (n + 1)-cluster category of a simply laced Dynkin
quiver due to Keller-Reiten [22]. First we recall some definitions which also will be used later on.

Assume that the triangulated category T is k-linear over a field k, all Hom-spaces are finite-dimensional,
and admits a Serre functor S [13]. Thus S is an triangulated auto-equivalence of T, and for any objects
A, B in T there are natural isomorphisms

D Homg (A4, B) —=> Homg(B,SA)

where D denotes the k-dual functor. If T admits a Serre functor S, then T is called (weakly) d-Calabi-Yau,
for some d = 1, provided that S(?) = (?)[d] as (additive) triangulated functors.

Let k be a field and H a finite-dimensional hereditary k-algebra. Then it is well-known that the bounded
derived category D®(mod-H) of finite-dimensional H-modules admits a Serre functor v. If d > 1 is an
integer, then the d-cluster category %;Id) of H, as defined by Keller [20], is the orbit category %é,d) =
D’(mod-H) /(v *[d])* of D’(mod-H) under the action of the automorphism group generated by X* —

v~ X*[d]). If H = kQ is the path algebra of a quiver @, then we say that %}Id) is the d-cluster category
of the quiver @ and we write ‘Ké)d). As shown by Keller [20], the d-cluster category %éld) is a d-Calabi-Yau

triangulated category and the projection functor 7 : D®(mod-£Q) —> ‘K;Id) is triangulated.
Recall that a triangulated category T is algebraic if T is triangle equivalent to the stable category of a
Frobenius category.

Theorem 7.14. [22] Let T be a k-linear triangulated category with finite-dimensional Hom-spaces over an
algebraically closed field k. Then for an integer n = 1, the following statements are equivalent.

(i) T is triangle equivalent to the (n+ 1)-cluster category ‘Kgﬂ) of some simply laced Dynkin quiver Q.
(ii) T is algebraic (n + 1)-Calabi-Yau and admits a (n — 1)-strong (n + 1)-cluster tilting object T such
that the endomorphism algebra Ends(T') has finite global dimension.

Proof. (i) = (ii) If condition (i) holds, then by Keller [20] we know that (KC(Q"H) is algebraic (n+1)-Calabi-Yau
and it is shown by Keller-Reiten in [21] that 7(H) is a (n+ 1)-cluster tilting object in %C(QHH), where H = kQ
considered as a stalk complex in D®(mod-H). Moreover in [22] it is shown that the (n + 1)-cluster tilting
object m(H) is (n — 1)-strong and its endomorphism algebra End(w(H)) has finite global dimension.

(ii) = (i) Conversely if condition (ii) holds, then by Theorem 7.5 we have that Ends(T") is 1-Gorenstein
and then by Corollary 7.11, Endy(T) is hereditary. Setting H = Ends(T'), by Theorem 4.2 in Keller-Reiten
[22], there is a triangle equivalence F : T = €0V such that F(T) = w(H). O

7.5. Abelian Subcategories. Let X be an (n + 1)-cluster tilting subcategory of T. We show that if the
cluster tilted category mod-X has finite global dimension, and X is (n — k)-strong, for some 0 < k < %, then
mod-X can be realized as a full subcategory of T, in some cases via a ¢-functor.

For an abelian category M we denote by Projgk M, resp. Proj=* M, the full subcategory of M consisting
of the objects with projective dimension < k, resp. < 0.

Proposition 7.15. Let X be a contravariantly finite t-rigid subcategory of T, t = 1, and assume that X is
(t — 1)-strong, if t = 2. Then the functor H : T — mod-X induces a full embedding

H @ (XxX[1] %% X[t]) nX[[t+1] —> Proj=" mod-X
which is an equivalence if X is t-strong.

Proof. Set Uy := (X % X[1] -+ X[t]) n X[t + 1] and H; := H|y,. First note that by Theorem 5.4, we have
pd H(A) < t, for any object A € U;, so we have a functor H; : U; — Proj<* mod-X.

Let « : A — B be a map in U; such that H(a) = 0. Then « factorizes through the map A% : A —
QY (A)[1], say via a map B : Q% (A)[1] — B. Since X is t-rigid and A lies in X * X[1] * --- = X[t], it
follows that Q4. (A) lies in X and then it is easy to see that QL.(A) lies in X * X[2] * - -+ = X[t — 1], hence
QL (A)[1] € X[1] * X[2] * - -+ = X[t]. Since B € X[ [t + 1], we have T(X, B[—i]) = 0, 1 < i < t. Since, as
easily seen, any map from an object form X[1] x X[2] % - - - * X[t] to an object in X/ [t + 1] is zero, we have
B = 0. Therefore a = 0 and H; is faithful. Next let o : Q.(4) — B be an X-ghost map. Then « factorizes
through the map hYy : Q3.(A) — Q%4 (A)[1],, say via a map 3 : Q% (A4)[1] — B. As above, Q% (A) lies in
X x X[1] * -+ -« X[t — 2], hence Q3.(A)[1] € X[1] » X[2] * - - -« X[t — 1]. Since B € X[t + 1], it follows directly
that any map from an object form X[1] * X[2] » - -+ * X[t — 1] to an object in X[t + 1] is zero, hence 3 = 0,
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and therefore v = 0. Consequently Ghy (2%.(A), B) = 0, and therefore the obstruction group O 4 p vanishes.
Then from Proposition 3.6, we infer that the map T(A, B) — Hom(H(A), H(B) is surjective, hence H(a) = &
for some map « : A — B. It follows that H; is full.

Now consider an object F' € mod-X, with pd F < ¢. Then H(A) = F, and we may choose A € X  X[1].
We have a projective resolutions 0 — H(XY) — H(X!™!) — .+ — H(X1) — H(X?) — H(4) — 0
in mod-X. The last map of the resolution gives us a map X! — X*~! which induces a triangle X* —
Xt=1 — A= — X'[1]. Applying H to this triangle and using that X is (¢ — 1)-strong, so T(X, X[—i]) = 0,
1 <i < t—1, wesee easily that T(X, A" ![—i]) = 0, 1 < i < ¢t—1, and moreover Im (H(X*™!) — H(X'7?)) =
H(A'1). Consider the induced monomorphism H(A!~1) — H(X?~2). Since X’ € X, we have A'~! € XxX[1]
and Q4. (A1) = X' € X. Since X is (¢t — 1)-strong, by Lemma 6.4, we have Ghy (Q4. (A1), X*72) = 0 and
therefore O g1 xi—2 = 0. It follows that the monomorphism H(A*"') — H(X*"?) is induced by a map
A=t — X*'=2_ Consider a triangle A"=! — X!72 — A'=2 — A'=![1]. As above, applying H to this
triangle we see easily that T(X, A""2[—i]) = 0, 1 < i < ¢ — 1, and moreover Im (H(X'"?) — H(X'7?)) =
H(A*~2). Moreover we have A*~2 € X » X[1] » X[2] and Q4 (A" ?) = A""! € X « X[1]. By Lemma 6.4 we
have Ghy (3. (A"72), X*73) = 0, so O gi—2 x+—s = 0. We infer that the monomorphism H(A*"?) — H(X"?)
is induced by a map A'~2 — X!=3. Considering a triangle A’"2 — X'=3 — A3 — A'2[1] and
continuing in this way, we construct triangles A7 — XJ=! — AJ=1 — AJ[1], with X7 € X, and exact
sequences 0 — H(A47) — H(X/71) — H(A771) — 0, for 1 < j < t, where A* = X', and the objects
A7 satisfy T(X, A7[—i]) = 0, 1 < i < t— 1. In particular for j = 1, we have a triangle A' — X° —
A% — A'[1], where A% € X x X[1] » --- » X[t] and T(X, A°[—i]) = 0. 1 < ¢ <t —1, and this implies that
H(A") =~ H(A) = F. Hence F is isomorphic to an object H(A?), where A° lies in (X#X[1]*- - -*X[t]) n X[, [t].
Finally assume that X is ¢-strong, i.e. we have in addition T(X, X[—t]) = 0. Then applying H to the triangle
A — X0 A% 5 Al[1] and using that A', A° € X]_,[t], we have directly that H(A°[—t]) = 0, so A°
lies in X/ [t + 1] and therefore A° € U;. This shows that H : U; — ProjS* mod-X is essentially surjective. [J

Theorem 7.16. Let X be an (n — k)-strong (n + 1)-cluster tilting subcategory of T, where 0 < k < n — 1.
(i) If mod-X has finite global dimension, and n = 2k, then gl. dim mod-X < k and there is an equivalence

H o (X X[1] %% X[k]) n XZ[k+1] > mod-X

(ii) If k = 1, then the induced full embedding T : mod-X — T s a O-functor, which extends
uniquely to an additive functor D(mod-X) — T commuting with the shifts.

Proof. Under the imposed assumptions, as in the proof of Proposition 7.7, we see that X is (k — 1)-strong. By
Proposition 7.15, the functor H induces a full embedding Hy : (X  X[1] * --- » X[k]) n X[k + 1] —
Projgk mod-X. Since, by Theorem 7.5, mod-X is k-Gorenstein, finiteness of gl.dim mod-X implies that
gl.dimmod-X < k, and therefore mod-X = Projgk mod-X. On the other hand since n = 2k, it follows
that X1 _, [n—k+1] € X[ [k + 1], i.e. X is k-strong. Then by Proposition 7.15, the functor Hy, is essentially
surjective, hence an equivalence. Finally assume that k = 1, son > 2, X is (n—1)-strong, and mod-X is hered-
itary. By Corollary 3.9 we have an isomorphism T(A, B[1]) = Ext'(H(A), H(B)), YA, B € (X*X[1]) n X{ [2].
It follows easily from this that the induced fully faithful functor T: mod-X ~ (X * X[1]) n X[[2] — Tis a
J-functor; details are left to the reader. By a result of Amiot [1], T extends uniquely to an additive functor
D®(mod-X) — T commuting with the shift functors. O

Note that the case n = k = 1, where the strongness condition is vacuous, the functor T gives the full
embedding Injmod-X ~ X[2] — 7.

8. (GORENSTEIN-PROJECTIVES

Our aim in this section is to investigate the full subcategory of Gorenstein-projective objects of the cluster
tilted category mod-X, where X is a (n — 1)-strong (n + 1)-cluster tilting subcategory.

For convenience, we call in this section (n — 1)-strong (n + 1)-cluster tilting subcategories simply strong
(n + 1)-cluster tilting subcategories.

8.1. Gorenstein-Projectives. To proceed further it is convenient to have a description of the full subcat-
egories of Gorenstein-projective and Gorenstein-injective objects of the cluster tilted category mod-X.

Let <7 be an abelian category. A complex of projective objects P* : --- — P! — PO —» Pl ...
is called totally acyclic if P* and the induced complex &7 (P*,(Q) are acyclic, for any projective object @
of &7. Dually a complex of injective objects I*: -++ — I~ — J9 — J1 — ... is called totally acyclic
if I* and the induced complex 7 (J, I*) are acyclic for any injective object J of 7.
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Definition 8.1. (i) An object G € o/ is called Gorenstein-projective if G =~ Coker(P~! — PY) for
some totally acyclic complex P* of projectives.
(i) An object G € & is called Gorenstein-injective if G =~ Ker(I° — I') for some totally acyclic
complex I* of injectives.

The full subcategory of Gorenstein-projective, resp. Gorenstein-injective, objects of & is denoted by
GProj <7, resp. Glnjo/. Also we denote by GProj./, resp. Glnj.s/, the stable category of GProj.<7, resp.
Glnj o/, modulo projectives, resp. injectives.

In the following remark we remind the reader of basic properties of Gorenstein categories which will be
used in the sequel. We refer to [12, 7], for more detailed discussions.

Remark 8.2. Let & be an abelian category with enough projective and/or injective objects.
e For any objects G € GProj.«/, G5 € GInjo/, A€ o/, and any k > 1 there are isomorphisms:

Ext"(G1, A) = Hom(QFGy,A) and  Ext"(4,Gy) — Hom(A,XFGy)

e The categories GProj ./ and GInj <7 are Frobenious exact subcategories of /. Hence the stable categories
GProj <7 and Glnj ./ are triangulated.

e If o/ is Gorenstein then Proj~* &/ = Inj~" &/; if &/ is of Goresntein dimension G-dim.«/ = d, then
Proj=* & = ProjS% & (and dually Inj~* o = InjS? o7). Moreover we have GProj.&/ = Q% and GInj.o/ =
Yo/ | see [7, Theorem 4.16]. It follows that if G-dim </ < 1, then GProj ./ consists of the subobjects of the
projective objects and Glnj.<Z consists of the factors of the injectives.

e The inclusion functor GProj.«/ — &/ admits as a right adjoint the functor Q-4Q% : o7 — GProj.</.

Dually the inclusion functor Glnj .« — &/ admits as a left adjoint the functor ¥~¢%% : o7 — Glnj.<7.

Let A be in T. Then there exists a triangle
Qv (A[n)[-1] — Cell—1(A[n])[-n] — A — Q%(A[n]) (8.1)
where the last map wanl] [-n]: A — Q% (A[n]) is a left X-approximation of A and
Cell,_1(A[n])[-n] € X[-n]*X[-n+ 1] *---x X[-1]

Lemma 8.3. Assume that the (n + 1)-cluster tilting subcategory X is strong. Then the full subcategory
Projmod-X, resp. Injmod-X, of projective, resp. injective, objects of mod-X is functorially finite in mod-X.
Moreover for any object A € T, the map

H(W)pg[=n]) © H(A) — H(Q%(A[n]))
is a left projective approximation of H(A), and the object H(A) is Gorenstein-projective if and only if the map
H(wf‘[:ll] [—n]) is a monomorphism.

Proof. We know that mod-X has enough projective and enough injective objects. Hence Projmod-X is con-
travariantly finite and Injmod-X is covariantly finite. Let F' = H(A) € mod-X. We claim that the map
H(wz[_nl] [-n]) : H(A) — H(Q%(A[n])) induced by the triangle (8.1) is a left projective approximation of
H(A). Indeed H(Q%}(A[n])) is projective since Qi (A[n]) € X. Let o : H(A) — H(X) be a map, where
X € X. By applying the Octahedral axiom to the composition v} owanl] [-n] : Cell;(A) — A — Q%(A[n]),
it is easy to see that there is triangle Q% (A[n])[-1] — B — Celli(A) — Q% (A[n]), where B lies in
X[1] %+« % X[n — 1] * X[-n] * - -« X[~1]. Now since Cell;(A) lies in X + X[1], the composition H(v}) o a :
H(Cell;(A)) — H(A) — H(X) is of the form H(3) for some map 3 : Cell; (4) — X. Since the (n+1)-cluster
tilting subcategory X is strong, any map from an object in X[1]*- - -xX[n—1]*X[—n]*- - -*X[—1] to an object
in X is clearly zero, and therefore the composition of B — Cell;(A) with  is zero. Hence there exists a map
p: Q%(A[n]) — X such that 3 = v} owz[*nl] [-n]op. Then H(v})oa = H(B) = H(v}) oH(wZEnl] [—n]) o H(p),
and since H(v}) is invertible, we have a = H(wz[*nl] [-n]) o H(p). This shows that H(WZ[;:,I] [—n]) is a left pro-

jective approximation of H(A) and Projmod-X is covariantly finite in mod-X. If H(wanH [—n]) is a monomor-

phism, then H(A) is Gorenstein-projective as a subobject of the projective object H(Q%(A[n]). Conversely
if H(A) is Gorenstein-projective, then there is a monomorphism p : H(A) — H(X), where X € X. Since u
factorizes through H(wf‘[_nl] [—n]), it follows that the latter is a monomorphism.

The proof that Injmod-X is contravariantly finite is dual and is left to the reader. O

The following characterization of Gorenstein-projective functors will be useful later; its dual version con-
cerning Gorenstein-injective functors is left to the reader.
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Lemma 8.4. Let X be a strong (n + 1)-cluster tilting subcategory of T. Then for any object A € T the
following statements are equivalent.
(i) H(A) is Gorenstein-projective.
(ii) The map A —> Q% (A[n]) induces a monomorphism H(A) — H(Q%(A[n])).
(iii) Casenz=2: Ae ("X nX")*X, or equivalently H(Cell,_1 (A[n])[-n]) = 0.
Case n = 1: Ghy(X[—1],A) = T(X[-1], 4), i.e. any map X[—1] — A, with X € X is X-ghost.

Proof. Since mod-X is 1-Gorenstein, by Remark 8.2, an object F' = H(A) in mod-X is Gorenstein-projective

if and only if F' is a subobject of a projective object. Clearly this is equivalent to say that F' admits a

monomorphic left (Proj mod-X)-approximation. Then the equivalence (i) < (ii) follows from Corollary 8.3.
(ii) < (iii) If n = 2, then applying H(A) to the triangle (8.1) we have a long exact sequence

-~ — H(Q% (A[n])[-1]) — H(Cell,—1(A[n])[-n]) — H(A) — H(Q%(A[n])) — ---

Since Q% (A[n]) € X it follows that H(Q%(A[n])[-1]) = 0. Hence the map H(A) — H(Q%(A[n])) is a
monomorphism if and only if H(Cell,,_1 (A[n])[—n]) = 0. Since always Cell,,_1 (A[n]) lies in (X*---*X[n—1])
it follows that Cell,_1(A[n])[—n] lies in (X[—n] % - - - x X[—1]) which is equal to "X by Corollary 4.6. Hence
H(Celln,l(A[n])[—n]) = 0 if and only if Cell,,_1(A[n])[—n] lie in KerH = X", and therefore if and only if
Cell,_1(A[n])[-n] lies in TX A XT. Using the triangle (8.1) this in turn is equivalent to A€ (TX N XT)*X. If
n = 1, then the triangle (8.1) takes the form Xi‘[l] [-1] — Xg[l] [-1] — A — Xil[l] and then H(A)
is Gorenstein-projective iff the middle map is killed by H, equivalently the middle map factorizes through
XT. Since n = 1 we have XT = X[1] and then clearly H(A) is Gorenstein-projective if and only if any map
X[-1] — A, with X € X, is X-ghost, i.e. factorizes through an object from X[1]. O

It is well known that over a d-Gorenstein abelian category <7 the full subcategory of Gorenstein-projectives
is contravariantly finite and the full subcategory of objects with finite projective dimension which coincides
with the full subcategory of objects with finite injective dimension, is functorially finite. The next result
describes the Gorenstein-projective approximation and the left and right approximation by objects of finite
projective dimension of any object of the 1-Gorenstein abelian category mod-X.

Proposition 8.5. Let X be a strong (n + 1)-cluster tilting subcategory of T. Then the full subcategory
(TX A XT) X is contravariantly finite in T. More precisely for any object A € T, there exists a triangle

Qk Q¥ (A[-1])[n+1]) — G4 — A — Qh (Q%(A[-1])[n + 1])[1] (8.2)
where Q5 (% (A[-1])[n + 1]) € X, and the map G4 — A is a right (TX n XT)  X-approzimation of A.
Moreover the above triangle induces a short exact sequence
0 — H(QX(QR(A[ ])[n+1])) —> H(G4) — H(A) — 0
and the map H(G4) — H(A) is a right Gorenstein-projective approzimation of H(A).

Proof. Consider the triangle arising from the cellular tower of A[—1].

Cell, 1 (A[-1])[1]] — A — Q%(A[-1])[n+1] — Cell,_1(A[-1])[2]
Then we know that QF.(A[—1]) lies in X. Since the injective object H(Q% (A[—1])[n + 1]) has projective
dimension at most one, we have a triangle

QO (W(A[-1D[n+ 1)) — Xgnapapmey — WA= +1] — Qi (Q(A[-1])[n +1])

where the object Q. (% (A[—1])[n + 1]) lies in X. Now form the weak-pull back of the first triangle along

the map nggc(A[q]) — QR (A[-1])[n + 1] in the sense of [8]:

[n+1]

Qx (Qx(A[-1])[n + 1]) == Qx (W (A[-1])[n +1])

Gl J

Cell,—1 (A[-1])[1] A XSOZTJLC(A[—I])[nJrl] —— Cell,_1 (A[-1])[2]

H i ¢ H

Celly—1 (A[-1])[1] : Q&(A[_l])[n 1]~ Cell,_1 (A[-1])[2]
1

Din + 1) [1] == Qx (W (A[-1D[n + 1])[1]

O (R (A[-
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Since the object Cell,_1(A[—1])[1] lies clearly in TX n XT it follows that G4 lies in (TX n XT) x X. This
implies, by Lemma 8.4, that the object H(G 4) is Gorenstein- projective. Applying the functor H to the above
diagram of triangles and using that the maps H(G4) — H(X Qn (Al=1])[ns1]) € H(QA (% (A[-1])[n +1]))
are monomorphisms we deduce that we have a short exact sequence 0 — H(Q%C (Q&(A[—l])[n + 1])) —
H(Ga) — H(A) — 0. Since H(QA (% (A[—1])[n + 1])) is projective in mod-X, it follows that the map
H(G4) — H(A) is a right Gorenstein-projective approximation of H(A). On the other hand let M be
n("™AX")*xX and let K — M — X — K][1] be a triangle, where K € "X n X" and X € X.
Also let M —> A be a map. The composition K — M — A — QR (A[-1])[n + 1], is zero since
KeX" =X[1]*---*X[n] and Q%(A[-1])[n+1] € X[n+1]. This implies that the composition K — M —>
A — QX (% (A[-1])[n+1]) [1] is zero and therefore the composition M —> A — QA (% (A[—1])[n+1])[1]
factorizes through the map M — X. Since X € X and QA (Q% (A[—1])[n+ 1])[1] lies in X[1], it follows that
the composition M — A — Q5 (% (A[—1])[n + 1])[1] is zero and therefore the map M — A factorizes
through the map G4 — A. This shows that G4 — A is a right ((TDC AXT) % DC)—approximation of A, ie.
(TX A XT) = X is contravariantly finite in 7. O

Corollary 8.6. Let X be a strong (n + 1)-cluster tilting subcategory of T. Then the right adjoint of the
inclusion Gprojmod-X — mod-X is given by:

Q' : mod-X — Gprojmod-X, Q 'QH(A) =H(G4)

Let A e T and consider the exact sequence 0 — H(QA (% (A[—1])[n + 1])) — H(G4) — H(A) — 0
of the above Proposition, where H(G4) — H(A) is a right Gorenstein-projective approximation of H(A).
Also consider the triangle, where the middle map is a left X-approximation of G 4:

Cell,_1(Ga[n])[-n] — Ga —> Q&(Galn]) — Celly_1(Ga[n])[=n +1]

Forming the Octahedral diagram induced by the composition Q3 (% (A[—1])[n+1]) — Ga — Q%(Ga[n])
we obtain two triangles:

A — P — Cell,_1(A[-1])[2] — A[1] (8.3)
O (U (A[=1D[n +1]) — Qx(Galn]) — Pa —> Qi (Qx(A[-1])[n + 1])[1]
Finally set H(G?) := Im (Q%(G a[n]) — Cell,_1(Ga[n])[—n + 1]) for some object G € 7.

Proposition 8.7. Let X be a strong (n + 1)-cluster tilting subcategory of T, and let A be an object of T.

(1) pdH(Pa) < 1 and the object H(G?) is Gorenstein-projective.
(ii) There is a short exact sequence

0 — H(4) — H(P*) — HGY) — 0
where the map H(A) — H(PA) is a left (Proj<'mod-X)-approzimation of H(A).

Proof. Applying H to the triangle (8.2) we have an exact sequence H(Q4 (% (A[—1])[n+1])) — H(Q%(G4a[n]))
—> H(P4) — 0. However H(QL (Q" (A[-1]D[n + 1])) — H(Q%(Ga[n])) is a monomorphism since
by construction is the composition of the maps H(Q% (Q%(A[-1])[n + 1])) — H(G.) and H(G4) —
H(Q% (G a[n]) which are monomorphisms. Hence we have short exact sequence 0 — H(Q5 (% (A[—1])[n +
1)) — H(Q%(Ga[n])) — H(Pa) —> 0 and therefore pd H(P?) < 1 since the objects Q% (G4[n]) and
Q% (% (A[-1])[n + 1]) lie in X. On the other hand applying the functor H to the triangle (8.3) and using
that H(Cell,_1(G a[n])[—n]) = 0, since Cell,,_1(G a[n])[—n] € X[—n]*---* X[—1], we have an exact sequence
0 — H(A4) — H(P*) — H(G?) — 0 and H(G?) is a subobject of H(Cell,_1(Ga[n])[-n + 1]). Since
Cell,—1(Ga[n])[-n + 1] lies in X[—n + 1] » - - - » X[—1] * X and H kills the objects of X[—n + 1] x--- x X[—1],
it follows that H(G“) is a subobject of a projective object and therefore it is Gorenstein-projective. Clearly
then the map H(A) — H(P?) is a left ProjS! mod-X-approximation of H(A), since Ext' (M, N) = 0, for any
Gorenstein-projective object M and any object N with finite projective dimension. O

8.2. Representation Dimension. Recall that an additive category is called Krull-Schmidt if any of its
objects is a finite coproduct of indecomposable objects and any indecomposable object has local endomor-
phism ring. A Krull-Schmidt category has finite representation type if there are finitely many indcomposable
objects up to isomorphism. Now let &/ be an abelian category with enough projectives. We say that o/
is of finite Cohen-Macaulay type, finite CM-type for short, if GProj.o/ is a Krull-Schmidt category of finite
represenattion type. In this section we show that if X is a strong (n + 1)-cluster tilting subcategory of T and
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the cluster tilted category mod-X is of finite CM-type, then mod-X is equivalent to the category of finitely
presented modules over a coherent ring of representation dimension < 3 in the sense of Auslander [3].

Lemma 8.8. Let & be a 1-Gorenstein abelian category. If Projof is covariantly finite and Inj.o/ is con-
travariantly finite in <7, then the full subcategory

& = GProj &/ @ Glnj o/ = add{X@Ye,;zf | X e GProjoZ, Y € Glnjﬁf}
is functorially finite in &/ and: gl.dimmod-& < 3.

Proof. Since </ has enough projectives and enough injectives, the full subcategories Proj.«/ and Inj.</ are
functorially finite in 7. Then by [7, Theorem 4.16] the full subcategories GProj < and GInj .« are functorially
finite in /. We use throughout that, by Remark 8.2, GProj &/ = Q.o/ and Glnj.«/ = Yo/ .

Let F' be in &/ and consider the following exact sequences in mod-X:

0O — F —»] — %¥F) —- 0 and 0 — QI — P — I — 0

where I' — [ is a monomorphism into an injective object I and P — I is an epimorphism from a projective
object P. The above exact sequences induce the following exact sequence:

0 — QI — Q¥YF — F — 0 (8.5)

Since & is 1-Gorenstein, it follows that Q(I) is projective. Hence applying &7 (G, —), where G is Gorenstein-
projective, to (8.5), we have Extl, (G, QI) = 0 and therefore the map Q¥ (F) — F — 0 is a right (GProj.«/)-
approximation of F. Since Inj &/ is contravariantly finite in 7, there is an exact sequence 0 — Qp(F) —
J — F, where the map J — F'is a right (Inj.)-approximation of F'. Then XQ(F) = Im(J — F') lies
in Glnj.«f = ¥(4) and we claim that the map 0 — X (F) — F' is a right Glnj «/-approximation of F.
Indeed let Z be a Gorenstein-injective object and Z — F be a map in 7; then by definition there exists an
exact sequence 0 — 2/ — J' — Z — 0, where J’ is injective and Z’ is Gorenstein-injective. Then the
composition J' —» Z — F factors through J and we have an exact commutative diagram

00— 7 J’ A 0
| | |

It follows that there exists a unique map Z — ¥Qq(F) = Im(J — F') and then by diagram chasing it is easy
to see that Z — F factors through Z — X0 (F), i.e. 0 — XQq(F) — F is a right Glnj ./-approximation
of F. Taking the pull-back of 8.5 along the map ¥Qj(F) — F we have an exact commutative diagram

0 Qr G —— S(F) —— 0
| | | 59
0 Qr ONF ——» F  —— 0

where the middle map G — QX F is a monomorphism and therefore GG is Gorenstein-projective. The above
pull-back diagram induces an exact sequence

0 — G — QEF(—BEQI(F) — F — 0 (8.7)

where clearly the objects G and QX F @ ¥Qq(F') lie in &. Using the pull-back diagram (8.6) it is easy to
see that the map QXF @ ¥Qi(F) — F is a right &-approximation of F'. Hence & is contravariantly
finite in o/. A dual construction gives that & is covariantly finite in &7. In particular mod-& is abelian with
enough projectives and the restricted Yoneda embedding Y : & — mod-&, Y(F) = Hom(—, F)|s induces
an equivalence between & and Projmod-&. Applying Y to (8.6) we have then a projective resolution

0 — Y(G) — Y(QEF(—BZQI(F)) — Y(F) — 0 (8.8)

in mod-& and therefore pd Y(F') < 1. Finally let M be an arbitrary object of mod-& and choose a projective
presentation Y(W;) — Y(Wy) — M — 0 in mod-&, where the W; lie in &. If F' = Ker(W; — W), then
using (8.8) we have a projective resolution

0 — Y(W3) — Y(W,) — YW;) — Y(Wy) — M — 0

where W3 = Y(G) for some Gorenstein-projective object G and Wy = Y (QX(F) @ XQ(F)). Hence pd M < 3
and therefore gl. dim mod-& < 3. O
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Recall that if o/ is an abelian category, then the representation dimension rep.dim .« of & in the sense
Auslander [3] is defined as follows. An object T of o is called generator, resp. cogenerator, if any object of
&/ is a factor, resp. subobject, of a direct summand of a finite direct sum of copies of T. We call an object
T of < right coherent if the full subcategory add T" has weak kernels; dually T is called left coherent if add T’
has weak cokernels. For instance T is right, resp. left, coherent, if add T" is contravariantly, resp. covariantly,
finite. Finally T is called coherent if T is left and right coherent object. Then

rep.dim &/ = inf { gl.dimmod-End/(T) | T is a coherent generator-cogenerator of ,527}

Theorem 8.9. Let T be a Krull-Schmidt triangulated category and X a strong (n + 1)-cluster tilting sub-
category of T. If mod-X is of finite Cohen-Macauly type, then rep.dim mod-X < 3. More precisely there is
a strong (n + 1)-cluster tilting coherent object T € X such that mod-X ~ mod-Ends(T), the ring Ends(T) is
coherent and the representation dimension of mod-Endy(T) is at most 3.

Proof. Since mod-X is of finite Cohen-Macaulay type, clearly X = add T for some (n + 1)-cluster tilting object
T € T and then mod-X ~ mod-Ends(7"). For the same reason GProjmod-X = add Z and GlInjmod-X = add W,
where Z, W € mod-X. Then the object G := Z @ W is a coherent object which is a generator-cogenerator of
mod-X, and then Lemma 8.8 shows that gl. dim mod-Endped-x(H) < 3. It follows that rep. dimmod-X < 3. O

Recall that a finite-dimensional k-algebra A over a field k is called of finite CM-type if the full subcategory
Gproj A of finitely generated Gorenstein-projective A-modules is of finite representation type.

Corollary 8.10. Let T be a triangulated category and T a strong (n + 1)-cluster tilting object of T. Assume
that the cluster-tilted algebra Endg(T) is of finite Cohen-Macaulay type. Then the algebra Ends(T) has
representation dimension at most 3.

9. CERTAIN CLUSTER TILTED SUBCATEGORIES ARE STABLY CALABI-YAU

We have seen that the category mod-X of coherent functors over a (n — k)-strong (n + 1)-cluster tilting
subcategory X of a triangulated category T is k-Gorenstein, provided that 0 < k < 1 or k < ”;1, if
2 < k < n—1. In this section we show that if the triangulated category T is (n + 1)-Calabi-Yau, then the
triangulated stable category modulo projectives of the Gorenstein-projective objects of mod-X is (n + 2)-
Calabi-Yau in case 0 < k < 1, and under an additional assumption if 2 < k < ”TH This generalizes a basic
result of Keller-Reiten [21] who treated the case n = 1.

Throughout let T be a triangulated category and X a fixed (n + 1)-cluster tilting subcategory of T, n > 1.

9.1. Serre Functors. Assume that the triangulated category T is k-linear with split idempotents over a
field k, all Hom-spaces are finite-dimensional, and admits a Serre functor S. So S: T — T is a triangulated
equivalence and there are natural isomorphisms

DT(A,B) — T(B,S(A)) (%)
where D denotes duality with respect to the base field k.
For any object A € T we consider triangles
X} — X§ — Cell;(4) — X4[1] and X{}[-1] — Cell'(4) — X' — X{! (9.1)

where the maps X — Q3(A) and X§ — A are right X-approximations and the maps A — X' and
Y (A) — X{* are left X-approximations. Then

Cell;(A) € X»X[1] and H(Cell;(A)) = H(A), Cell'(A) € X[-1]*X and H°P(A) = H(Cell'(A))

Recall that the transpose Tr(F), in the sense of Auslander-Bridger [4], of an object F' in mod-X is defined
as follows. Let H(X!) — H(X") — F — 0 be a projective presentation of F. Consider the duality
functor d” := Hom(—, H(?)|x) : mod-X — mod-X°P, defined by d"(F) = Hom(F,H(?)|x) : X — 27b, where
Hom(F, H(?)|x)(X) = Hom(F,H(X)). Similarly the duality functor d' : mod-X°® — mod-X is defined and
it is well-known that (d”,d') : mod-X < mod-X°? is an adjoint on the right pair of contravariant functors
inducing a duality between Proj mod-X and Proj mod-X°P, a duality between GProj mod-X and GProjmod-X°P,
and finally a duality between GProjmod-X and GProjmod-X°P. Now the transpose Tr(F') of F' is defined by

Tr(F) = Coker (d"H(X?) — d"H(X")). Since d"H = H°?, we have an exact sequence
0 — d"(F) — H®P(X?) — H®(X") — Tr(F) — 0

In this way one obtains a functor Tr : mod-X — mod-X°P which is well-known to be a duality. Now the
duality D with respect to the base field k acts on mod-X by D(F)(X) = D(F(X)).
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Lemma 9.1. There are isomorphisms:
DTrH(A) = H(SCell;(A)[-1]), TrDH(A) = H(S_lCelll(A)[l]) (9.2)
DTrHP(A) =~ H(S™'Cell;(A)[1]), TrDH(A) = H(SCeIIl(A)[—l]) (9.3)

I

Proof. For simplicity we set A* = Cell;(4) and A, = Celll(A). Applying H and H°P to the triangles
in (9.1) we have exact sequences H(X}) — H(XY) — H(A*) — 0 and H®?(X{') — HP(X{') —
H°P(A,) — 0. Applying the dual functors Hom(—, HP(?)|x) : mod-X°® — mod-X and Hom(—, H(?)|x) :
mod-X —> mod-X°P we then have exact sequences H(X#') — H(X{') —> TrH?(A*) — 0 and HP(X$) —
HoP(X1) — TrH(A,) — 0. Finally applying the duality functor D and using (*) we have exact sequences

0 — DTrH(A*) — H(SX}) — H(SX%) and 0— DTrHP(4,) — HP(ST1X{) — HoP(ST1XE)
However since S and S~! are triangulated, we have triangles
S(X4[-1]) — S(A*[-1]) — SX} —> SX§, STIXE — STIXT — STHAL[L]) — STHXGML))

Since H(S(XY[—1])) = T((X,S(X9[~1])) = DT(XQ[-1],X) = DT(XY,X[1]) = 0 and HP(S~L(XL[1])) =
T(S~H(XA[L]), X) = T(XL[1],SX) = DT(X, XA[1]) = 0, we infer that

DTrH(A*) = HS(4*[-1]) and DTrH®(A,) = H®PS™1(4,[1])
Since H(A) =~ H(A*) and H°P(A) =~ H°P(A,), these reduce the isomorphisms:
DTrH(A) = HS(A*[—1]) and DTrHP(A) = HPS™1(A,[1])
Similarly we get isomorphisms: DTrHP(A) =~ H(S™'A*[1]) and TrDHP(A) =~ H(SA4[-1]). O
To proceed further we need the following.

Lemma 9.2. The cluster tilted category mod-X has Auslander-Reiten sequences. In particular Auslander-
Reiten formula

DHom(H(A),H(B)) —=» Ext'(H(B),DTr(H(A)) (9.4)
holds for any objects H(A) and H(B) in mod-X. Moreover there are isomorphisms:

Hoﬁ(H(B),H(SCeIIﬂA)[—l])) = DExtl(H(A),H(B)) = M(H(S’1Celll(3)[1]),H(A))

Proof. Since X is an (n + 1)-cluster tilting subcategory, it follows that X is functorially finite. On the other
hand by using (#), we have isomorphisms, VX € X:

~

DH(X) = DT(X,X) = T(X,SX) = T(S7'X,X) = H®(S™'X),

DH®?(X) = DJ(X,X) = T(X,SX) —= H(SX)
which show that k-duals of contravariant or covariant representable functors over X are coherent. This
clearly implies, by [5], that mod-X is a dualizing k-variety. In particular has Auslander-Reiten sequences and
Auslander-Reiten formula (9.4) holds. The remaining isomorphisms follow by using Lemma 9.1. 0

Finally we shall need the following observation.
Lemma 9.3. The Serre functor S : T — T induces an equivalence
S:X 5 X[n+1]
Proof. Consider the triangle
Qy (S(X[=1D[n — 1] — Cell, 1 (S(X[~1])) — S(X[1]) — Qx(S(X[-1])[n]
Since the functor S is triangulated, we have a triangle
Qe (S(X[=1])[n] — Cell, 1 (S(X[1]))[1] — S(X) — Qx(S(X[-1])[n +1]

By Serre duality the middle map corresponds to an element of DT (X, Cell,,_1 (S(X[—1]))[1]). The last space
is zero since Cell,,_1 (S(X[—1]))[1] € X[1] » X[2] % - - - * X[n], see Proposition 4.2. Hence the middle map of
the triangle above is zero and therefore S(X) lies in X[n + 1] as a direct summand of Q% (S(X[—1])[n + 1].
Therefore S(X) € X[n + 1]. Dually if X[n + 1] € X[n + 1], then for any ¢ with 1 < ¢ < n, we have:
TS HX[n + 1]),X[]) = T(X[n + 1],S(X[i])) = DT(X[:], X[n + 1]) = 0. Hence S™'(X[n+1]) € [ X =X
and therefore S™1(X[n + 1]) € X and the assertion follows. O
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9.2. (n + 1)-Calabi-Yau Categories. From now on we assume that: T is (n 4+ 1)-Calabi-Yau, i.e. there is
an isomorphism of triangulated functors:

~

S(?) = (ND[n+1]
Then we have natural isomorphisms
D Homg (A, B) — Homg (B, A[n + 1)) (9.5)

Lemma 9.4. Let A be an object in X x X[1]. Then we have the following
(i) DTrH(A) = H(A[n]).
(ii) If n = 2, then: H(A[t]) =0, 1<t<n-—1.
(iii) For any H(B) € GProjmod-X, there is a natural isomorphism:
DHom (H(A),H(B)) — Hom(Q'H(B),H(A[n]))
Proof. (i) Since A € X » X[1], we may take A = Cell;(A) and then by Lemma 9.1, we have an isomorphism
DTr(H(A)) = H(A[n]).
(ii) Since n > 2, and A € XxX[1], we have A[t] € X[t]*X[t+ 1] which is contained in XT = X[1]*---*X[n],
for 1 <t <n—1. It follows that H(A[¢]) =0, 1 <t <n—1.
(iii) By Lemma 9.2 we have an isomorphism DHom(H(A),H(B)) = Extl(H(B)7 DTr(H(A)). Hence (i)
gives us an isomorphism DHom (H(A),H(B)) = Ext' (H(B),H(A[n])). Since H(B) is Gorenstein-projective,
by Remark 8.2 we have an isomorphism Ext' (H(B), H(A[n])) = Hom (Q'H(B), H(A[n])). O

To proceed we need the following two preliminary results.

Lemma 9.5. Let n = 2, and A be an object in X x X[1] such that H(A) is Gorenstein-projective. Let
¢ — A — B — (C[1]
be a triangle in T. If C lies in X[—n] * X[—n + 1] % - - - « X[—1], then there exists a short exact sequence
0 — H(A) — H(B) — H(CI[1]) — 0

which remains exact after the application of the functor Hom(—,H(X)), VX e X. Moreover if H(C[1]) is
Gorenstein-projective, then so is H(B). The converse holds if mod-X is Gorenstein.

Proof. Since H(A) is Gorenstein-projective, there is a monomorphism H(A) — H(X), where X € X. Consider
the composition H(C) — H(A) — H(X). Since A lies in X % X[1], the monomorphism H(A4) — H(X)
is induced by a map A — X. The composition C — A — X is clearly zero, since C lies in X[—n] »
X[-n + 1] » --- » X[-1]. Therefore the map A — X factorizes through H(B). As a consequence the
composition H(C') — H(A) — H(X) is zero. Since H(A) — H(X) is a monomorphism and H(A[1]) = 0,
since A € X x X[1], we infer that the map H(C') — H(A) is zero and therefore we have an exact sequence:
0 — H(A) — H(B) — H(C[1l]) — 0 (9.6)
and in addition, as the above argument shows, any map H(A) — H(X), X € X, factorizes through H(B).
It follows that the exact sequence (9.6) remains exact after the application of the functor H(X), VX € X.
If H(CT1]) is Gorenstein-projective, then so is H(B), since GProjmod-X is well-known to be closed under
extensions. Conversely let mod-X be Gorenstein, say k-Gorenstein, and let H(B) be Gorenstein-projective. It
is well-known, see [7], that GProj mod-X consists of all objects F such that Extk(F, H(X))=0,¥YX e X, Vk > 1.
Applying Hom(—, H(X)), VX € X, to the exact sequence (9.6) we have trivially that Ext® (H(C[1]), H(X)) = 0,
VX e X, Yk = 1, so H(C[1]) is Gorenstein-projective. O

Lemma 9.6. Let T be an (n + 1)-Calabi- Yau triangulated category over a field k, n = 1, and let X be an

(n + 1)-cluster tilting subcategory of T such that the cluster tilted category mod-X is k-Gorenstein, k = 0.

Assume that for any A € X« X[1] such that H(A) is Gorenstein-projective, there is a natural isomorphism:
Q- DHA) = Q7RQFH(A[R)

in GProjmod-X. Then GProjmod-X is (n + 2)-Calabi- Yau.

Proof. Since mod-X is k-Gorenstein, it follows from Remark 8.2 that Q*H(C) € GProjmod-X, YC € T,

and moreover the functor Q*QF : mod-X — GProjmod-X is a right adjoint of the inclusion mod-X —
GProjmod-X. Then by Lemma 9.4, we have natural isomorphisms

~ ~

DHom(H(A),H(B)) > Hom(Q'H(B),H(A[n])) > Hom(Q'H(B),Q *Q*H(A[n])) =
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> Hom(Q'H(B), 2 " VH(A)) = Hom(H(B), 2 "F?H(4))
for any Gorenstein-projective objects H(B) and H(A), with A € X+ X[1]. Since any object £ = H(C') of mod-X
is isomorphic to an object of the form H(A), where A € X » X[1], namely A = Cell;(C), the above natural
isomorphism holds for all Gorenstein-projective objects. Hence the functor Q~("*2) : GProjmod-X —>
GProjmod-X serves as a Serre functor in GProjmod-X, i.e. GProjmod-X is (n + 2)-Calabi-Yau. O

Now we are ready to state and prove the first main result of this section. Note that the case n =1 is due
to Keller-Reiten [21].

Theorem 9.7. Let T be a k-linear triangulated category over a field k with finite-dimensional Hom-spaces.
Let X be an (n + 1)-cluster tilting subcategory of T and assume that X is (n — k)-strong, 0 < k <1, n > 1.
If T is (n + 1)-Calabi- Yau, then the stable triangulated category Gprojmod-X is (n + 2)-Calabi- Yau.

We split the proof in two steps k = 0 and k& = 1. In each step we need to treat separately the cases n =1
and n = 2. Note that under the imposed assumptions, the category mod-X is 1-Gorenstein. More precisely
for £ = 0, mod-X is Frobenius, so mod-X = GProjmod-X and GProjmod-X = mod-X. If £k = 1 then the
category mod-X is 1-Gorenstein and GProjmod-X = Q mod-X coincides with the full subcategory of mod-X
consisting of the subobjects of the projective objects.

Lemma 9.8. Let X be an (n + 1)-cluster tilting subcategory of T, n = 1. Assume that X is (n — 1)-strong, if
n = 2. Then VA e X  X[1], such that H(A) is Gorenstein-projective, there is an isomorphism in mod-X:

H(4) = Q""'H(A[n])
Proof. 1. Assume that n = 1. Then T = XxX[1], and X is a 2-cluster tilting subcategory of the 2-Calabi-Yau
category 7. By Lemma 8.4, there exists a triangle X}‘[l] [-1] — Xg[l] [-1] — A — Xil[l]’ where the last
map is a left l-approximation of A, Xj4[1] lie in X, and the map Xg[l] [-1] — A is X-ghost. Hence applying
H to the above triangle and using that T(X, X[1]) = 0, we have an exact sequence
0 — H(4) — H(X}p) — H(X%y) — H(A[1]) —0
Hence in mod-X we have an isomorphism: H(A) = Q?H(A[1]) as required.
2. Assume that n > 2 and X is (n — 1)-strong. Consider the triangles
O (An]) — Xiny — Q7 (Aln]) — Q% (A[n])[1] (Thpay)

Since by Lemma 9.4, T(X, A[i]) = 0, 1 < ¢ < n — 1, applying H to the triangle (T}l[n]), we have exact
sequences

0 — H(Q%(A[n]) — H(Xg[n]) —> H(A[n]) — O (9.7)

H(Xpg[=n]) — H(A) — HQx(A[n])[-n+1]) — 0
and isomorphisms:
HQ (A[n][—k]) =0, 1<k<n—2 (9.9)
By Lemma 9.5, the map H(Xg[n] [-n]) — H(A) is zero and therefore (9.8) induces an isomorphism:
H(A) = HQ(A[n])[-n +1]) (9.10)
Using (9.9) and applying H to the triangle (Tf‘[n]), we have an exact sequence
0 — HQX(A[R]) — H(Xp;) — HOQx(A[n]) — 0
and isomorphisms:
HQ% (A[R])[-k]) =0, 1<k<n-3
H(Q% (A[n])[-n + 1]) = HOQ&(A[n])[-n +2]) (9.11)
Similarly applying H to the triangle (Tf‘[n]), we have an exact sequence
0 — HQX(A[R]) — HXZp;) — HOQX(A[R]) — 0
and isomorphisms:
H(Q% (A[n])[-k]) =0, 1<k<n—4
HQ3 (A[n])[-n + k]) = H(Q(A[n])[-n+k+1]), k=1,2 (9.12)
Continuing inductively in this way, and applying H to the triangle (TX[_n %), we have an exact sequence

0 — H@Q ' (A[]) — H(XG2) — HQE2(A[]) — 0
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and isomorphisms:

H(Q*(A[D)[-1]) =0

HQ 2 (A[n)[-k]) = HOQE AR~k +1]), 2<k<n—1 (9.13)
From (9.10) - (9.13), it follows that we have isomorphosms:
HQE H(AD[-1]) = H@OQy 2(ARD[-2]) — HQy *(ARD[-3]) —
- S HEOQE(ARD[-n +2]) = HEOQ(A[R])[-n+1]) = H(A) (9.14)
On the other hand the short exact sequences 0 — H(QA(A[n])) — H(Xifnl]) — H(Q5 1 (A[n])) — 0,
1 <k <n-—1, shows that in mod-X we have isomorphisms:
QFH(A[n]) = H(QL(A[n]), 0<k<n-—1 (9.15)

Finally applying H to the triangle (TZ[n])v we have an exact sequence

0 — HQy (A[RD[-1]) — HQR(A[]) — HXL) — HOQ (A[n]) — 0
Since Q% (A[n]) := X' lies in X, it follows that HQY ' (A[n])[-1]) = Q2H(Q% ' (A[n])). Hence we have

an isomorphism in mod-X:
HQy H(ARD[-1]) = QPHOQF (A[n])) = Q" 'H(A[R))
Putting things together we have an isomorphism H(A4) =~ Q"*'H(A[n]) in mod-X, as required. O

Proposition 9.9. Let X be an n-strong (n + 1)-cluster tilting subcategory of T. If T is (n + 1)-Calabi- Yau,
then mod-X is (n + 2)-Calabi- Yau.

Proof. Since X is n-strong, we have X = X[n + 1] and therefore mod-X is Frobenius, so all objects of mod-X
are Gorenstein-projective. It follows that mod-X is triangulated.

1. First let n = 1. Then X = X[2] and T = X+ X[1]. By Lemma 9.8 we have an isomorphism Q*H(A[1]) =
H(A). Since any object of mod-X is Gorenstein-projective, this is equivalent to Q~2H(A) =~ H(A[1]). Then
by Lemma 9.6 we infer that mod-X is 3-Calabi-Yau.

2. Now let n > 2. Let A be an object in X * X[1]. Then by Lemma 9.8, we have an isomorphism
H(A) = Q"*H(A[n]) or equivalently since mod-X is triangulated, Q= ("*YH(A) = H(A[n]). Then by
Lemma 9.6 we infer that mod-X is (n + 2)-Calabi-Yau. O

Now we treat the case & = 1. Note that the following result was proved independently by Iyama-
Oppermann, see [17].

Proposition 9.10. Let X be an (n — 1)-strong (n + 1)-cluster tilting subcategory of T, n = 1. If T is
(n + 1)-Calabi- Yau, then the stable triangulated category GProjmod-X is (n + 2)-Calabi- Yau.

Proof. We treat separately the cases n = 1, where the (n — 1)-strong condition is vacuous, and n > 2.

1. Assume that n = 1. We have that X is a 2-cluster tilting subcategory of the 2-Calabi-Yau category
T and T = X « X[1]. Let A be in T such that H(A) is Gorenstein-projective. Then by Lemma 9.8 we know
that Q2H(A[1]) = H(A). Since mod-X is 1-Gorenstein, it follows that QH(A[1]) is Gorenstein-projective.
Then applying Q! to the last isomorphism we obtain QH(A[1]) = Q 'H(A) and therefore Q 1QH(A[1]) =
Q2 2H(A). Then by Lemma 9.6 it follows that GProjmod-X is 3-Calabi-Yau.

2. Assume that n > 2. By Lemma 9.8, for any object A € X+X[1], such that H(A) is Gorenstein-projective,
there is a natural isomorphism in mod-X:

Q" H(A[n]) = H(A)
Since QH(A[n]) is Gorenstein-projective, the above isomorphism gives:
Q7 "H(A) = Q'H(A[n]), hence Q" 'H(A) = Q'QH(A[n])
It follows by Lemma 9.6 that GProjmod-X is (n + 2)-Calabi-Yau. O
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9.3. Higher Gorenstein categories. We have seen that if X is an (n — k)-strong (n + 1)-cluster tilting
subcategory of T and n = 2k—1, then the cluster tilted category mod-X is k-Gorenstein. Moreover if 0 < k < 1
and if T is (n + 1)-Calabi-Yau, then the stable triangulated category GProjmod-X is (n 4 2)-Calabi-Yau.

In this subsection we prove that an analogous statement holds for 2 < k < n — 1 under an additional
assumption.

Theorem 9.11. Let T be an (n + 1)-Calabi- Yau triangulated category over a field k. Let X be an (n — k)-
strong (n + 1)-cluster tilting subcategory of T, where n = 2k — 1, 0 < k < n — 1. Assume that any object
H(C), where C € X[—n + 1] -+ - X[—1], has finite projective or injective dimension.

Then the stable triangulated category GProjmod-X is (n + 2)-Calabi- Yau.

Proof. First note that since by Theorem 7.5, the cluster tilted category mod-X is k-Gorenstein, then by
Remark 8.2, we have that Q¥H(A) lies in GProjmod-X, YA € T. We use throughout that if an object of
mod-X has finite projective dimension, then its projective dimension is at most k.

We shall show first that for any A € X = X[1] such that H(A) is Gorenstein-projective, there is a natural
isomorphism in the stable category GProjmod-X:

Q= FDHA) = Q7FQRH(A[R))

For 1 €t € n, we have triangles

Q(A]) — X5 — QN AR) — Q4 (ARD[] (Th)
where Q% (A[n]) € X and Q5 (A[n]) = A[n]. Using that, by Lemma 9.4, T(X, A[{]) =0, 1 < i <n—1, and

T(X,X[—i]) =0, 1 <i<n—k, we deduce a short exact sequence:

0 — H(Q%(A[n]) — H(X%[n]) — H(A[n]) — 0

and isomorphisms:
HQ  (A[n)[-t]) =0, 1<t<n—k
Using this and applying H to the triangle (Tj[n])7 we have an exact sequence
0 — HQX(A[R]) — HXhp;) — H(Qx(A[r]) — 0
and isomorphisms:
H(Q%(A[n])[-k]) = 0, <kgsn—-k-1
(

Continuing in this way, and finally applying H to the trlangle TZ ) we have an exact sequence

0 — HE@1(A[]) — HXE2) — HE@2(A[]) — 0

and an isomorphism:
H(Q5 ™ (A[n])[-1]) = 0

Finally applying H to the triangle (Tf;[n])7 we have an exact sequence

0 — HOQL(A[M]) — HX5L) — HEO A — 0

From the above exact sequences we deduce that:

QFH(A[n]) = H(Q5%(A[n])) (9.16)
On the other hand from the cellular tower of A[n] we have triangles:
QL (A[n)[t — 1] — Cell,_1(A[n]) — A[n] — Q4 (A[R][], 1<t<n (Cﬁ;[yll])

Applying H and using that H(A[]) = 0,1 < i < n—1, and, by Proposition 4.3, H(Q% (A[r])[{]) = 0,1 < i < ¢,
we deduce an exact sequence

H(Cell,_1 (A[n])[-n]) —> H(A) — H(Q(AR][-n +1]) — H(Cell,_1(A[n])[-n+1]) — 0

[~
Since Cell;_1 (A[n])[—n] lies in (X * f)C[ Jx x X[t —=1])[-n] = X[-n] * X[-n + 1] x -+ * X[—n +t — 1] which
is contained in X[—n]* X[-n 4+ 1] % - * f)C[ ] since ¢t < n, by Lemma 9.5 we deduce short exact sequences

0 — HA) — H(QBC(A[ —n +t] ) — H(Cellt 1(A[n])[-n + 1]) — 0 (9.17)
for 2 <t < n. Moreover we infer isomorphlsms.
H(Q% (A[n])[-n + t + 1]) —=> H(Cell,_1(A[n])[—n + 2])
H(Q (A[n])[-n +t +2]) = H(Cell,_1(A[n])[-n +3])
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H(Q4 (A[n])[t — 2]) — H(Cell,_1(A[n])[-1]) (9.18)
Consider the short exact sequence (9.17) for t = n—1. Since Cell,,_2(A[n])[-n+1] lies in X[—n+1]*- - - X[-1],
it follows that pd H(Cell,,—2(A[n])[—n + 1]) < k. Then (9.17) gives us an isomorphism in mod-X:
QFH(A) = QFHQE (A[R])[-1]) (9.19)
From the triangle (T7% An ]) we have an exact sequence
0 — H@Qx (A[rD[-1]) — HQR(A[n]) — HXL) — HOQy (A[n]) — 0

Since Q% (A[n]) := X4 lies in X, it follows that

H(Q3 (A[R])[-1]) = Q*H(Qx ' (A[n])) (9.20)
Consider the short exact sequence

0 — HOQ*(A[])[-1]) — HOQ(A[n) — HXI) — HOQ*(A[R]) — 0

induced from the triangle (T"[ Then we have a short exact sequence

Aln]®
0 — HQ*(A[R])[-1]) — H@Q ' (A[n])) — QHQR*(A[n]) — 0 (9.21)
Setting t = n — 2 in (9.18), we have an isomorphism H(Q% *(A[n])[—1]) = H(Cell,,—3(A[n])[-n + 2]). Since
Cell,,_3(A[n])[-n+2] lies in X[—n+2]«- - -*X[—1], it follows that by hypothesis that pd H(Q4 2(A[n])[-1]) <
k. Hence from (9.21) we get an isomorphism QFtTH(QE(A[n])) = QF2H(QR"2(A[n])), which since
0% mod-X = GProj mod-X, gives us an isomorphism:
QUHQy " (A[n]) = QUFTHQE 2 (A[n])) (9.22)
Next consider the exact sequence

0 — HOQ(A[R)[-1]) — HQy *(A[n]) — HX ) — HOQ(A[R]) — 0

induced from the triangle (T Z[_n?) Then we have a short exact sequence
0 — HOQ*(ARD[-1]) — HQ*(A[R]) — QH@QLP(A[R]) — 0

Setting ¢ = n — 3 in (9.18), we have an isomorphism H(Q5*(A[n])[—1]) = H(Cell,,_4(A[n])[—n + 3]). Since
Cell,,_4(A[n])[-n+3] lies in X[—n+2]*- - -*X[—1], it follows that by hypothesis that pd H(Q4*(A[n])[-1]) <
k. Hence from the above exact sequence we obtain as above an isomorphism:

~

Q"H(QE*(A[n])) — QTTHQ*(A[n])) (9.23)

Combining (9.22) and (9.23) we arrive at an isomorphism:

~

QHQY H(A[R]) = QFTHOQL 2 (A[]) = QMPH(QR Y (A]))
Continuing in this way we obtain inductively isomorphisms:
OO (Afn]) > OFTH©OE(AL]) S OMPHOES(Af) S -
= QPTIHOQA (A[R]) = QVTHHQL(A[R])) = QUTIQRH(A[R)) (9.24)
Combining the isomorphisms (9.22)-(9.24) we have isomorphisms:
QFH(A) = QFHQL H(AR][-1]) = Q2QFH(QE Y(A[n])) = Q2Q"'QFH(A[n]) =
Q"TIOFH(A[R]) = QFQ"TH(A[R]) (9.25)
Since H(A) and Q"*+!H(A[n]) are Gorenstein-projective, we infer an isomorphism:
H(A) = Q"*H(A[n])

Hence in the stable category GProjmod-X we have isomorphisms:

~

H4) = Q7FQ"H(4) = Q7FQPQ T IH(AR]) = Q" Q7 *Q H(A[n])
We infer that:

~

Q=" DHA) = Q7FQFH(A[R))
as required. Then by Lemma 9.6 we infer that GProj mod-X is (n + 2)-Calabi-Yau. O
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Note that Theorem 9.7 is a special case of Theorem 9.11, since X is (n — k)-strong and 0 < k < 1, then as
easily seen H(C) =0, for any C € X[-n + 1] x--- » X[—1].

From now and on until the end of this section we fix an (n + 1)-Calabi-Yau triangulated category T over a
field k, for instance T = (fl({"H) the (n + 1)-cluster category of a finite-dimensional hereditary k-algebra H.
Let X be an (n — k)-strong (n + 1)-cluster tilting subcategory of T, 0 < k < n — 1, and assume that if k£ > 2,
then n = 2k — 1 and any object H(C'), where C € X[—n + 1] x - -- x X[—1], has finite projective or injective
dimension.

Corollary 9.12. The triangulated category Gprojmod-X has Auslander-Reiten triangles and the Auslander-
Reiten translation is given by:

7=Q "D . Gprojmod-X = Gprojmod-X, 7TH(A) = Q- "*VH(A) = Q*QFH(Cell, (A)[n])

Recall that the triangulated category of singularities, in the sense of Orlov, see [24], associated to a finite-
dimensional k-algebra A, is the Verdier quotient D®(mod-A)/K®(proj A) of the bounded derived category of
finite-dimensional A-modules by the thick subcategory of perfect complexes.

Corollary 9.13. If X = addT for some object T € T, then the triangulated category of singularities
Dying (End(T')) associated to the k-algebra Ends(T) is (n + 2)-Calabi- Yau.

Proof. By Theorem 9.11 the endomorphism algebra Ends(7T') is k-Gorenstein. Since T is (n + 1)-Calabi-Yau,
by Theorem 7.5, the stable triangulated category Gproj(Ends (7)) of finitely generated Gorenstein-projective
End(T")-modules is (n + 2)-Calabi-Yau. Then the assertion follows from the well-known fact that over a
Gorenstein algebra A the triangulated category of singularities Dging(A) of A is triangle equivalent to the
stable category Gproj A of finitely generated Gorenstein-projective modules over A. O

Corollary 9.14. The stable category mod-Gproj(X) of coherent functors over the stable category Gproj(X) of
Gorenstein-projective coherent functors over X is a triangulated category which is (3n + 5)-Calabi- Yau.

Proof. By Theorem 9.11, the triangulated category Gproj(X) is (n +2)-Calabi-Yau. The category of coherent
functors mod-Gproj X over Gproj X is Frobenius and therefore its stable category mod-Gproj X is triangulated.
The the assertion follows by a result of Keller which says that if a triangulated category % is d-Calabi-Yau,
then the stable category mod-% of coherent functors over ¢ is (3d — 1)-Calabi-Yau. O

Let A be a finite-dimensional k-algebra over a field k£ and assume that A is of finite CM-type. Let G be an
additive generator of Gproj A, i.e. GprojA = add G. The endomorphism algebra Endy (G) of G is called the
Auslander-Cohen-Macaulay algebra of A, and its stable endomorphism version End, (G) := Hom, (G, G), is
called the stable Auslander-Cohen-Macaulay algebra of A. Note that End, (G) is self-injective, see [10]. Now
as a consequence of Corollary 9.14 we have the following.

Corollary 9.15. If the cluster-tilted algebra Endg(T') is of finite Cohen-Macaulay type and G is an additive
generator of Gproj Ends(T), then the stable module category mod-End, (G) is (3n + 5)-Calabi- Yau.

Remark 9.16. In this section we considered ((n — k)-strong) (n + 1)-cluster tilting subcategories X in
triangulated categories T which are assumed to be d-Calabi-Yau, for d = n + 1. By Serre duality we have
DT(X,X) = T(X,X[d]). If 0 < d < n+ 1, it follows that DT(X,X) = 0 and therefore X = 0. If d = n + k,
where 2 < kK < n—1, and X is (n — k)-strong with n > 2k — 1, then we know by Corollary 7.4 that
X[n+ k] € X[k — 1] » X[k] x- - -« X[2k — 1]. Since 2k — 1 < n, this easily implies that T(X,X[n + k]) = 0 and
then again X = 0. Therefore a d-Calabi-Yau triangulated category T may contain a non-trivial (n+ 1)-cluster
tilting subcategory, only if d > n + 1, and may contain a non-trivial (n — k)-strong (n + 1)-cluster tilting
subcategories, only if d ¢ {1,2,--+ ,n,n+2,--- ,2n}.

10. GLOBAL DIMENSION OF NON-STABLE CLUSTER TILTING SUBCATEGORIES

In this section we are interested in the non-stable versions of the results of the previous sections and
in particular we are concerned with the estimation of the global dimension of the category of coherent
functors over a cluster-tilting subcategory of an abelian category induced by a cluster-tilting subcategory of
its Gorenstein-projectives.

Let o/ be an abelian category and M C & a full subcategory. In analogy with the triangulated case define

Mi={Aed | Ex**(M,A) =0, 1<k<n} and ;M={Aded | Ext"(4,M)=0, 1<k<n}
Then M is called n-rigid if M € M+ or equivalently M < M.
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Lemma 10.1. Let o/ be an abelian category with enough projectives. Then for any object A € o/ with finite
projective dimension we have A = 0 if and only if Extk(A7 P)=0,YPeProj«, 0 <k <pdA.

Proof. Let pd A =nandlet 0 — P* — P! — ... — P! — PO A — 0 be a projective
resolution of A. Then 0 = Ext"(A, P") = Ext'(Q"'4, P"), so the sequence 0 — P" — P! —
Q1A — 0 splits and therefore Q"' A is projective. Then Ext'(Q""2A4, Q" 1A) =~ Ext" (4, Q"1 A) =0,
500 — Q" 1A — P"2 5 Q" 24 — 0 splits and therefore Q724 is projective. Continuing in this way
we see that Q' A is projective. Then 0 = Extl(A, Q' A) =0, so the sequence 0 — QA — P* — A — 0
splits and therefore A is projective. Then A = 0 since &/ (A, A) = 0. O

From now on, let &/ be an abelian category with enough projectives and assume that M is a contravariantly
finite subcategory of 7 such that Proj.o/ < M.

Since M is contravariantly finite in 7, the category mod-M is abelian. We consider the, fully faithful since
Proj &7 € M, functor

H : & — modM, H(A) = (— A)|m

Then H admits an exact left adjoint which is given by the restriction functor R : mod-M — mod-Proj &/ ~ &7,
induced by the inclusion Projo/ € M. Clearly KerR consists of all coherent functors F' : M°® — /b
which admit a projective presentation H(M?!) — H(M°) — F — 0 where the map M! — M? is an
epimorphism in /. Further Ker R coincides with the full subcategory of mod-M consisting of all coherent
functors over M vanishing on the projectives and is equivalent to the category mod-M of coherent functors
over the stable category M — &7b and is Hence we have a short exact sequence of abelian categories

0 — mod-M — mod-M — & —0 (10.1)

Let F € mod-M, and fix throughout a projective presentation H(M®') —s H(M®) — F — 0 of F. Then
we have an exact sequence
0 — H(Ap) — HM') — H(M°) — F — 0 (10.2)
where Ap = Ker(M! — M?) and then Q(F) = Im(H(M') — H(M?)) and H(Ar) = Q*(F).
Let A € o/. Then there exists a long exact sequence, called an M-resolution of A,

~—>MX—>M271—>~-~—>MA—>M9‘—>A—>O (10.3)

such that its image under H is a projective resolution of H(A). This is defined as the Yoneda composition
of short exact sequences 0 — KZH — MY — K% — 0 constructed inductively, where each map
MY — K7 is a right M-approximation of K*, Vi > 0, and K = A. Note that the right M-approximations
are epics since Proj o7 € M. It follows that projective resolutions of F' € mod-M are of the form

-— H(M},) — H(M;;l) — - — H(MY,) — HM') — H(M?) — F — 0 (10.4)
where H(M') — H(M°) — F — 0 and Ar = Ker(M! — M?).

Lemma 10.2. (i) For any object F' € mod-M the following are equivalent:
(a) F € mod-M
(b) Ext®(F,H(A)=0,0<k<1,VAe .
If F € mod-M and M € M-, then there are isomorphisms:

F o= Ext'(— Ap)lv = Ext®(— K, )|lve = - = Ext" (= K} %)l = Ext"(— K73 Yl

(ii) For any object B € o7, and any n = 1, the following are equivalent:
(a) BeM/.
(b) For any A € &, there are isomorphisms:

N
oy
N
S

Ext"(4,B) = Ext*(H(A),H(B)), 1

(iii) The following are equivalent:
(a) M < M.
(b) For any F' € mod-M € mod-M and any X € M, we have:

Ext"(F,H(X)) =0, 0<k<n+]1
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Proof. (i) (b) = (a) Since F lies in mod-M, the map M! —s M? in (10.2) is epic and we have an ex-
act sequence 0 —> Ap — M! —s MY — 0 which, for any B € </, induces a long exact sequence
0 — o/ (M° B) — o/ (M',B) — /(A,B) — Ext'(M° B) — ---. Since H is fully faithful, the
monomorphism & (M° B) — &/(M?", B) is isomorphic to the map (H(M°),H(B)) — (H(M),H(B))
whose kernel is isomorphic to (F, H(B)). We infer that (F,H(B)) = 0. This implies that we have an exact se-
quence 0 — (H(M°), H(B)) — (Q(F), H(B)) — Ext'(F,H(B)) — 0. On the other hand we have a long
exact sequence 0 —> (Q(F),H(B)) — (H(M"),H(B)) — (H(A), H(B)) — Ext'(F,H(B)) — 0. Since H
is fully faithful, the map ./ (M, B) — &/ (A, B) is isomorphic to the map (H(M?'), H(B)) — (H(A), H(B)).
By diagram chasing this implies that the map (H(M"),H(B)) — ((F),H(B)) is an isomorphism. Hence
Ext!(F,H(B)) = 0 as required.

(a) = (b) It suffices to show that the map M! — M? in (10.2) is epic. Let C = Coker(M* — M?0).
Then H(M®) — H(C) factorizes through F. Since by hypothesis (F,H(B)) = 0, VB € ., it follows that
the map H(M®) — H(C), or equivalently the map M" — C is zero. Hence C = 0.

Assume now that M € M;-. Then the map M! —s M? inducing the exact sequence (10.2) is an epimor-
phism, so we have a short exact sequence 0 — Ap — M* — M° — 0in o7 Since Ext' (—, M) = 0, it
follows that F' = Ext'(—, Ar)|n. Now consider an M-resolution - - - —> M}, —> MY, — Ap — 0 which
is build from short exact sequences 0 — KIZF — Mi‘_Fl — Kf;fpl — 0, where the last map is a right
M-approximation. Using that M € M}, as above we have isomorphisms Ext! (—, Ar)|n = Ext?(—, K )l =

- Ext”"(—, K7y 2)|M ~ Ext"(—, K}~ 1)|M and the assertion follows.

(i) (b) = (a) Setting A = X € M, and using that H(X) is projective in mod-M, we infer that Ext*(X, B) =
0, 1 € k < n. Hence B lies in MJ-

(a) = (b) First let n = 1. Consider the short exact sequence 0 — K! — M® — A — 0. Then we
have an exact sequence 0 — H(K') — H(M°) — H(A) — 0. Using that Ext' (M, B) = 0, we then
have an exact sequence 0 — &7 (A, B) — &/ (M°, B) — &/ (K, B) — Ext' (A, B) — 0. Since H(M?) is
projective, we also have an exact sequence 0 — (H(A), H(B)) — (H(M"),H(B)) — (H(K'),H(B)) —
Ext!(H(A), H(B)) — 0. Since the left exact functor H is fully faithful, the sequences 0 — o7 (A, B) —
o (M°,B) — o/ (K"',B) and 0 — (H(A),H(B)) — (H(M°),H(B)) — (H(K"!),H(B)) are isomorphic.
It follows that there is an isomorphism Ext' (A, B) = Ext'(H(A), H(B)). Applying <7 (—, B) to the short exact
sequences 0 — K — M~ — K=1 — 0,1 <i < n—1, and using Ext*(M, M) = 0, 1 < k < n, it is easy
to see by dimension shift that we have isomorphisms: Ext"(A, B) =~ Ext" '(K',B) = --- =~ Ext' (K" !, B).
Then considering the short exact sequence 0 — K" — M""! — K"~! — 0, we see, as in the case
n = 1, that we have an isomorphism Ext"(A, B) = Ext'(K"~!, B) =~ Ext'(H(K"~ 1) H(B)). Since clearly
H(K" 1) = Q" 'H(A), we infer that we have an isomorphism Ext"(A, B) = Extl(H(A),H(B)) and the
assertion follows by induction.

(iii) (b) = (a) Let X € M and consider the functor (—, X) : M® — &b, M’ — M(M' X). If
() : 0 — Q(X) — Px — X — 0 is an exact sequence, where Py is projective, then it is easy to see
that we have an exact sequence H(Px) — H(X) — (—, X) — 0, so (—, X)) lies in mod-M € mod-M, and
the exact sequence (10.2) for F' = (—, X) takes the form

0 — H(Q(X)) — H(Px) — H(X) — (-, X) —0

Let G = Im(H(Px) — H(X)). Clearly then Ext®((—, X), H(X)) = Ext'(G,H(M) = Coker[«(Px,M) —>
o (X)), M)] = Ext' (X, M). Tt follows by hypothesis that Ext'(X, M) = 0. Next for 2 < k < n + 1 we have
0 = Ext™™((—, X),H(M)) = Ext* "' (H(Q(X)), H(M)). Since Ext'(X,M) = 0 and X is arbitrary, it follows
from (ii) that for any object A € M we have an isomorphism Ext'(A4, M) = Ext!(H(A), H(M)), in particular
Ext!(Q(X), M) = Ext'(H(Q(X)), H(M)). Since the last space is zero, we have Ext' (Q(X), M) = Ext*(X, M) =
0. Tt follows that Ext®(M, M) = 0 and therefore M € M. Then by (ii) we have an isomorphism Ext®(X, M) =
Ext?(Q(X),M) = Ext*(H(Q(X)),H(M)). Since the last space is zero we infer that Ext®(X,M) = 0 and
therefore M € M3 . Continuing in this way we have finally that M € M as required.

(a) = (b) From (10.2) we see that Ext**?(F,H(X) =~ Ext"(H(Ap),H(X)), Yk = 1. Since M < ML, by
(i) we infer isomorphisms Ext"™?(F,H(X)) =~ Ext*(4r, X), 1 < k < n. Now since F € mod-M, we have
a short exact sequence 0 — Arp — M! — M° — 0. Applying &/ (—, X), with X € M, the induced
long exact sequence gives Ext®(Ap, X) = 0, 1 < k < n — 1. We infer that Ext**?(F, H(X)) =~ Ext*(4r, X),
1 < k < n—1. Hence using (i) we have Ext*(F,H(X)) = 0,0 < k < 1 and 3 < k < n + 1. Finally
applying H(X) to the short exact sequence 0 — H(Ar) — H(M') — Q(F) — 0 we have an exact
sequence (H(M'),H(X)) — (H(A),H(X)) — Ext*(F,H(X) — 0. Since the map (H(M"),H(X)) —
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(H(A), H(X)) is isomorphic to the map (M', X) — (A, X) which is an epimorphism since Ext* (M°, X) = 0,
we infer that Ext?(F,H(X)) = 0. Hence Ext"(F,H(X)) = 0, 0 < k < n + 1, as required. O

Proposition 10.3. If Proj </ ; M < M, then gl. dim mod-M = n+2. Moreover if M- = M, then tM = M
and gl. dim mod-M = n + 2.

Proof. Since M # Proj .o/, we have mod-M # 0 so there exists 0 # F' € mod-M. If gl.dimmod-M < n + 1,
then by Lemma 1.2(iii) we have Ext*(F,H(X)) = 0, 0 < k < n + 1, and then by Lemma 10.1 it follows
that F' = 0. This contradiction shows that gl.dimmod-M > n + 2. Now assume that Mﬂ; = M. To show
that gl.dimmod-M = n + 2, it suffices to show that gl.dimmod-M < n + 2. By using the exact sequence
(10.2), this holds if pd H(A) < n, YA € &/. Since the exact sequence (10.3) becomes a projective resolution
of H(A) after applying H, it suffices to show that H(K™) is projective, or equivalently that K™ € M. Since
M; = M, it suffices to show that K™ € M. Consider the extensions 0 — K — M~! — K=1 — (),
where each map M*~! — K®~! is a right M-approximation of K~! for 0 < i < n and K" := A. Since
Ext”(M, M) = 0, 1 < k < n, we have clearly Ext'(M, K*) = 0, 1 <4 < n. In particular Ext'(M, K™) = 0 and
we have an isomorphism Ext*(M, K") = Ext'(M, K"~!) = 0, hence K™ € Mz. Continuing in this way we
have finally isomorphisms Ext”™ (M, K™) = Ext" ™' (M, K" 1) > - .. = Ext!(M, K') = 0. Hence K™ € M;- = M
and therefore pd H(A) < n. We conclude that gl. dim mod-M = n + 2.

Now let A € *M. By applying </(—, M) to the extension 0 — K' — M° — A — 0, we have
Exti(Kl,M) =0, 1 <i<n—1. Using this and applying & (—, M) to the extension 0 — K? — M! —
K' — 0, we have Ext'(K2,M) = 0, 1 <i < n—2. Continuing in this way we finally have Ext' (K™=, M) = 0.
Since pd H(A) < n, we have K™ € M and therefore the extension 0 — K" — M! — K"~ 1 —s 0 splits,
hence K™~ € M. Since Ext' (K™ 2, M) = 0, the extension 0 — K" ' — M' — K" 2 — 0 splits and
therefore K"~2 e M. Continuing in this way we see the objects K* lie in M and therefore since Ext (A, M) =0,
we infer that the extension that the extension 0 — K' — M°? — A — 0 splits. Then A € M as a direct
summand of M. We conclude that A € M, i.e. M =M. O

Corollary 10.4. Let o/ be an abelian category with enough projectives and enough injectives. Let M be a
functorially finite subcategory of </. Then the following are equivalent.
(i) Projo/ & M and My = M.
(ii) Inj« S M and M = M.
(iil) M is n-rigid , Proj«/ G M or Inje/ G M and gl. dim mod-M = n + 2.
If (i) holds, then: M < GProj o if and only if o is Frobenius if and only if M € Glnj<Z. If this is the case,
o is Krull-Schmidt and M is of finite representation type, then:

rep.dms/ < n+2

Proof. (i) = (ii), (iii) By Proposition 10.3 we have gl.dimmod-M = n + 2, M = M and Injo&/ < M. If
Injo/ = M, then clearly & = M, hence & = Proj.&/ = M since then &/ is semisimple. Hence Injo/ #= M.
The implication (ii) = (i) follows by duality and is left to the reader.

(iii) = (ii) Let A € *M. Since gl.dimmod-M = n + 2, it follows that pd H(A) < n and therefore we
have an M-resolution 0 —» M3 — M5 ™' — ... — M} — MY — A — 0 of A of length < n.
Applying to the extension 0 — K} — M? — A — 0 the functor &/ (—, M), we see that K} € +_ ;M
and then by induction Kzfi € #M, 1 € i < n—1. In particular since Kzfl e 1M, the extension
0— M} — Mz_l — Kz_l — 0 splits and therefore Kﬁ_l € M. Since KX_Q € M, it follows that the
extension 0 — Kf‘*l — MX*Q — KZ*Q — 0 splits and therefore KX*Q € M. Continuing in this way we
see that the extension 0 — K} — M4 — A — 0 splits and therefore A € M. We infer that ;M = M.

Assume now that one of the equivalent conditions (i)-(iii) hold. If &7 is Frobenius, then < = GProj &7 and
then M € GProj.o7. Conversely assume that M € GProj 7. Since any object of &/ admits an M-resolution of
lenght < n, it follows that o is Gorenstein and G-dim &7 < n. Since M contains the injectives, it follows that
any injective object is Gorenstein-projective. Since spli &/ < oo it follows that any injective object has finite
projective dimension and therefore any injective object is projective since it is Gorenstein-projective. Now if
P is a projective object, then let () : 0 — P — I — A — 0 be exact, where I is injective. Applying
o/ (M, —), we have directly that & € ML | and there is an isomorphism Ext"(M,A) = Ext"*'(M, P).
However since silp &/ = G-dim.«/ < n, we infer that id P < n, so Ext"™'(M, P) = 0. Hence Ext"(M, A) = 0
and therefore A € M, = M. Clearly then the extension (f) splits, so P is injective as a direct summand of
1. Hence o7 is Frobenius. If moreover o/ is Krull-Schmidt and M = add M, then add M is functorially finite
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in & and M contains as a direct summand a projective generator and an injective cogenerator of 7. Since
mod-End, (M) = mod-M, it follows that gl. dim mod-End., (M) = n+ 2 and therefore rep.dim &/ < n+2. O

From now on we assume that the abelian category ./ has enough projectives. We consider the stable
category GProj </ of Gorenstein-projective objects of &/ modulo projectives as a triangulated category with
suspension functor Q~!. For any full subcategory X of GProj.«/, we denote by M = 7~ !X the pre-image of
X under the projection functor 7 : GProj «# — GProj.«7. Note that Proj«/ € M < GProj <.

Lemma 10.5. (i) X is contravariantly finite in GProj </ if and only if M is contravariantly finite in

GProj .

(ii) If Proj &/ is covariantly finite in o7, then X is covariantly finite in GProj.«/ if and only if M is
covariantly finite in GProj <.

(iii) X} = X if and only if M- A GProj.« = M.

(iv) If & is Gorenstein, then:
(a) X is contravariantly finite in GProj.< if and only if M is contravariantly finite in < .
(b) If If Proj </ is covariantly finite in <7, then X is covariantly finite in GProj <7 if and only if M

s covariantly finite in < .

Proof. (i) First let X be contravariantly finite in GProj«/ and let G € GProj.«Z. Let f : Xe — G bea
right X-approximation of G. Let Mg in M be such that M, = X ;. Then we have a map fqg: Mg — G
which may chosen to be an epimorphism since M contains the projectives. If o : M’ — G is a map, where
M' € M, then we have a factorization o = P oic for some map p: M’ — X . Hence we have factorization
a—pof =kroe, where Kk : M' — P and ¢ : P — G and P is projective. Since fg is an epimorphism,
there exists a map A : P — Mg such that Ao fg =¢e. Then a = (p + ko A) o fg, i.e. the map iG is a right
M-approximation. Conversely if M is contravariantly finite and f : Mg — G is a right M-approximation of
G € GProj &7, then clearly the map iG : Mo — G is a right X-approximation of G.

(ii) Clearly contravariant finiteness of M in GProj ./ implies contravariant finiteness of X in GProj ..
Conversely let X be contravariantly finite in GProj.o/ and let G € GProj«/. Let iG G — X% bea

left X-approximation of G. Consider a map f& : G — M;, where f f and M, = M ¢ Since G

is Gorenstein-projective, there exists a short exact sequence 0 — G — P¢ — G’ — 0, where G’ is
Gorenstein-projective. Then the map p : G — PY is clearly a left projective approximation of G. It is easy
to see that the map f¢ := (f&, u) : G — M; @ PY is a left M-approximation of G.

(iii) By Remark 8.2 we have isomorphisms, VG, G1, G2 € GProj </, VA€ o, Vk > 1:

Ext*(G,A) = Hom(Q*G,A) and Ext®(Gi,G2) = Hom(Gy,Q7*Gy)
It follows directly that: XI = X if and only if M n GProj &/ = M.
(iv) Part (a) follows from (iii) since if &7 is Gorenstein, then GProj .« is contravariantly finite in &/ and (b)
follows from (iii) since if Proj .« is covariantly finite in &/ and &/ is Gorenstein, then GProj &7 is covariantly
finite in <7, see [7]. O

Let o be an abelian category with enough projectives, resp. injectives. Then & is called (projectively),
resp. (injectively) Gorenstein if there exists n > 0, such that any object of &/ admits a exact resolution of
length < n consisting of Gorenstein-projective, resp. Gorenstein-injective, objects. The minimum such n is
called the Gorenstein dimension of <7, denoted by G-dim <7, and coincides with the Gorenstein dimension as
defined in Section 7, if &7 has enough projectives and enough injectives, see [12].

Let U, V be full subcategories of «/. Then we define U ¢V to be the full subcategory

UoV =add{A e .« | I an exact sequence: 0 — U — A —V — 0, where U e U and V €V}

Inductively we define U; ¢ Ug o -+ o U, Vn = 1, for full subcategories U; of 7. Clearly the operation ¢ is
associative and clearly U; ¢ Us - <>un comc1des with the full subcategory Filt(Uy, -+ ,U,,) of &7 consisting
of direct summands of objects A Which admit a finite filtration

0=Apc A cAyc---cA,_1cA,=A

such that Ap/Ag—1 € Uk, 1 < k <n. Hence: Filt(Uy, Uz, - ,U,) =Up o Ug 0--- 0 Uy,

If M is contained in GProj.7, then we denote by Q7'M the full subcategory of GProj.«/ consisting of all
direct summands of objects A for which there exists an exact sequence 0 — M —> P — A — 0, where
M e M and P is projective. Then Q~*M is defined inductively for k > 2.

Now we are ready to prove the main result of this section.
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Theorem 10.6. Let o/ be an abelian category with enough projectives. Let X be a full subcategory of GProj .o/
and set M = 7~1X. Then the following are equivalent.

(i) o is Gorenstein and X is an (n + 1)-cluster tilting subcategory of GProj <7 .
(ii) M is contravariantly finite in o/ and M n GProj.«/ = M and gl. dim mod-M < .

If (i) holds and X # 0, then M n GProj .o/ = M, we have an equality

A =MoQ ™Mo -0 Q"M o ProjSley (10.5)
where G-dim &/ = d, and gl. dim mod-M is bounded as follows:
n+2 < gl.dimmod-M < max{n,G-dim}+3 (10.6)

Moreover pdyoqv F=n+2, VF € mod-X, F # 0, and:
(a) If G-dim.o/ < n, then: gl.dimmod-M =n + 2.
(b) If G-dim</ = n, then: gl.dimmod-M € {n+2,n+ 3}.
(c¢) If G-dimo/ > n, then: n+2 < gl.dimmod-M < G-dim.</ + 3.

Proof. (ii) = (i) Contravariant finiteness of M in &/ implies that M has weak kernels, so mod-M is abelian.
Assume that gl. dim mod-M = ¢ < 00. Then pd H(A) < ¢ and since M contains the projectives, this implies that
any object A in &/ admits a finite M-resolution of length < ¢. Since M consists of Gorenstein-projectives, it
follows that the Gorenstein dimension of &7 is at most ¢, hence .« is Gorenstein by [12]. Since Mt ~GProj.&/ =
M, by Lemma 10.5 we have X! = X, so X is an (n + 1)-cluster tilting subcategory of GProj 7.

(i) = (ii) Since X is (n + 1)-cluster tilting and </ is Gorenstein, it follows from Lemma 10.5 that M is
contravariantly finite in 7 and therefore M has weak kernels. Then mod-M is abelian. We use throughout
the restricted Yoneda functor

H : & — mod-M, H(A)=(—,A)|m

Since by Lemma 10.5 we have M n GProj.«/ = M, it suffices to show that gl.dim mod-M < co. We show
first that pd H(G) < n, VG € GProj«/. Since X = M is an (n + 1)-cluster tilting subcategory of GProj <7,
it follows by Theorem 6.3 that GProj.& = X x Q!X x--- » Q7"X. We show by induction on n that for any
Gorenstein-projective object G there exists an exact resolution

0—M"—M""'—... > M —-M —-G—0 (10.7)

of G by objects from M. If n = 1, then GProj.«Z = X x Q 'X, hence there exists a triangle X! — X% —
G — Q71X By the construction of triangles in GProj.oZ, the above triangle is induced by a short exact
sequence 0 — M! — M° — G — 0, where M' = X! and M° = X°, so the M liein M. If n = 2,
then GProj.oZ = X » Q71X » 072X, and therefore there exists a triangle X' —G— G — Q_IXO,
where X lies in X and G! lies in QX » Q2X. Then as before, there exists a short exact sequence
0— A — M° — G — 0, where A' = QG" and M° = X°. Since QG* lies in X » Q~1X, it follows that
there exists a short exact sequence 0 —> M?2? — M' — A' — 0, where X* = M*. We infer that there
exists a short exact sequence 0 — M? — M!' — M°? — G — 0, where the M? lie in M. Continuing by
induction we have the short exact sequence (10.7). Applying H to the exact resolution (10.7) and using that
M is n-rigid, we infer that

0 — H(M") — HM"™) — .- — H(M') — H(M") — H(G) — 0 (10.8)

is exact, so it is a projective resolution of H(G) in mod-M. Hence pd H(G) < n.

Next we show that pd H(A) < max{n,G-dim«/} +1, VA € /. Indeed let t := G-dim <. Consider the
cotorsion pair (GProj </, Proj~” /) in &/ and note that Proj~” & = ProjS" .7, see [12]. Let 0 — Y4 —>
G4 —> A —> 0 be the right GProj «/-approximation sequence of A, so Y4 has finite projective dimension,
ie. pdYy < t. Applying the functor Homg (M, —) to the above short exact sequence, and using that
Ext’, (M,Y4) = 0, V¥n = 1, since M consists of Gorenstein-projective objects and Y4 has finite projective
dimension, we deduce a short exact sequence

0 — H(Yy) — H(G ) —> H(A) —> 0 (10.9)

in mod-M. Let 0 — P* — P*! — ... — P% — Y, —> 0 be a projective resolution of Y4. Applying
the functor H, and using that M consists of Gorenstein-projective objects, we then have an exact sequence

0 — H(P") — H(P'7') — ... — H(P') — H(P") — H(Y4) — 0 (10.10)
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which is a projective resolution of H(Y,4). Hence pd H(Y,) < ¢t. Now since pd H(G4) < n and pdH(Y,4) < ¢,
it follows from (10.9) that pd H(A) < max{n,t} + 1. We infer that pd H(A) < max{n,G-dim«/} +1, VA€ 7.
Next we show that gl. dimmod-M < max{n, G-dim &/} + 3. For any object F' € mod-M, considering the exact
sequence (10.2) associated to F', it follows directly that pd F' < pd H(Ar) + 2. Hence by the above we have
pd F' < max{n, G-dim &} + 3. Thus gl. dim mod-M < max{n,G-dim </} + 3 < o0.

Now assume that (i) holds and X # 0, or equivalently M # Proj <. Then Proposition 10.3 shows that
gl.dimmod-M = n + 2. Hence we have the bounds n + 2 < gl.dimmod-X < max{n,G-dim<«/} + 3. If
0 # F € mod-X, then F admits a presentation 0 — H(Ap) — H(M') — H(M°) — F — 0,
where the map M' — M?© is epic. Since the M® are Gorenstein-projective and GProj.« is closed under
kernels of epimorphisms, it follows that Ar is Gorenstein-projective. Hence by the above argument we have
pdH(Ar) < n and therefore pd F' < n+ 2. Since by Lemma 10.2(iii), Ext*(F, H(M)) = 0,0 < k < n+1, and
F # 0, we infer by Lemma 10.1 that pd F' = n + 2.

We show equation (10.5). Let A be in &7 and consider the exact sequence 0 — Y4 — G4 — A — 0
where the map G4 — A is a right GProj<7-approximation sequence of A, so Y4 has finite projective
dimension, i.e. Y4 € Proj~” .. Since G4 is Gorenstein-projective, there exists a short exact sequence
0 — G4 — P — Q7 'G4 — 0, where P is projective and Q7 1G4 is Gorenstein-projective. Then
the composition Y4 — G4 — P induces a short exact sequence 0 — Y4 — P — Y4 — 0 and
clearly Y4 has finite projective dimension. By diagram chasing then it is easy to see that there exists
a short exact sequence 0 — G4 — A@®P — Y4 — 0. Hence A € GProj.o/ o Proj~” o/. Using
that GProj.@ = X x X[1] x --- x X[n], it follows that GProj.& = Mo Q1Mo .- 0 Q7 "M. We infer that
o = GProj o/ o Proj~* o/ =MoQ "Mo---0Q ™Mo Proj~” .

(a) If G-dim &/ < n, then any object Y € &7 of finite projective dimension has projective dimension < n.
It follows that pd H(Y) < n. Now the short exact sequence (10.9) induces a long exact sequence, YA € «:

- — Ext™ (H(GA), —) — Ext”y (H(Ya4), —) — Ext, ' (H(A), =) — Ext  (H(G ), =) — - -

Since we have pd HI(G4) < n and pd H(Y4) < n, we have Ext”/* (H(A), —) = 0 and therefore pd H(A) < n.
It follows that gl. dim mod-M < n + 2 and consequently gl. dim mod-M = n + 2.

(b) If G-dim&/ = n, then as above we have Ext"?(H(A),—) = 0, so pd H(A) < n + 1 and therefore
gl.dimmod-M < n + 3. Then from (10.6) we have n + 2 < gl. dimmod-M < n + 3.

(c) If G-dim.«/ > n, then as above we have Ext&4™“+2(H(A), —) = 0, so pd H(A) < G-dim &/ + 1 and
therefore gl. dim mod-M < G-dim &/ + 3. Then from (10.6) we have n+2 < gl. dimmod-M < G-dim« +3. O

Corollary 10.7. Let o/ be a Gorenstein abelian category with enough projectives. Let X be an (n+1)-cluster
tilting subcategory of GProj.o/ and let M = 7= 'X. Then for any F € mod-X and any G € mod-X we have:

Ext*(F,G) =0, Vk>0, k#n+2—i---,n+2 0<i=pdG <max{n,G-dim}+3

Proof. By Theorem 10.6 we have pd F = n + 2 and Ext"(F,H(M)) = 0, Yk > 0, k # n + 2. On the other by
the same Theorem we know that pd G < max{n, G-dim &/} + 3. Now the assertion follows easily by induction
on pd G by applying the functor (F, —) to a the extensions 0 — QG — H(N’/71) — V-1G — 0. O

Corollary 10.8. Let o/ be Gorenstein and assume that GProj o7 is (n +1)-Calabi- Yau. Let X be an (n+1)-
cluster tilting subcategory of GProj </ and let M = 7=1X. If Hom(M, QM) = 0, 1 <i < n — 1, then mod-X
is 1-Gorenstein and the stable triangulated category GProjmod-X is (n + 2)-Calabi- Yau.

Keller and Reiten proved that if X is a 2-cluster tilting subcategory of &, where < is a Frobenius abelian
category and if & is 2-Calabi-Yau, then gl. dim mod-M = 3, where M = 7~ 1(X), see [21]. The following direct
consequence of Theorem 10.6 and Corollary 10.4, generalizes the result of Keller-Reiten for any (n +1)-cluster
tilting subcategory, n = 2, without assuming the Calabi-Yau condition.

Corollary 10.9. Let o7 be an abelian category with enough projectives and enough injectives. For a full
subcategory M < GProj 7, the following are equivalent.

(i) <7 is Frobenius and M is an (n + 1)-cluster tilting subcategory of <.
(ii) M is contravariantly finite in </, contains the projectives, and M: = M.

(iii) M is covariantly finite in </, contains the injectives, and M = M.

(iv) M is n-rigid, contravariantly in o/ and contains the projectives, or covariantly finite and contains

the injectives, and gl.dim mod-M = n + 2.
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In particular if <7 is a Krull-Schmidt Frobenius abelian category and X is an (n + 1)-cluster subcategory of
o/ which is of finite representation type, then

rep.dima/ <n+2

Corollary 10.10. For an Artin algebra A the following are equivalent.

(i) A is Gorenstein and Gproj A contains a (n + 1)-cluster tilting object.
(ii) < contains a generator M such that add M = M;- n Gproj A and gl. dim Enda (M) < 0.
If (ii) holds, then M is a cogenerator if and only if A is self-injective and then rep.dim A < n + 2.

Corollary 10.11. Let A be an Artin algebra and let T be an (n + 1)-cluster tilting object of Gproj A, n = 1.
IfExt!(T,DTrT) = 0,2 <t <n—k+1, where 0 < k < n— 1, then the cluster tilting algebra mod-End, (T)) is
k-Gorenstein. Moreover for 0 < k < 1, the stable category Gprojmod-End, (T") is (n + 2)-Calabi- Yau provided
that Gproj A is (n + 1)-Calabi- Yau.

Proof. For any Ty, T € addT and for 2 <t <n —k+ 1, we have:

Exth (T1,DTrTy) = Exth(Q''Ty,DTrTy) =~ DHom, (Th, Q'~1Ty)
It follows that Hom, (7%,Q'T1) = 0, 1 < t < n — k and therefore the (n + 1)-cluster tilting object T is
(n — k)-strong. Then the assertions follow from Corollary 10.8. O

The following is also a result of Keller-Reiten, see [21, Theorem 5.4], called relative (n + 2)-Calabi- Yau
duality, proved in loc.cit., in the setting of an algebraic (n + 1)-Calabi-Yau triangulated category over a field.
However in our setting we give a different proof.

Corollary 10.12. Let &/ be a Gorenstein abelian Hom-finite k-category over a field k, and assume that
GProj & is (n + 1)-Calabi-Yau. Let 0 # X be a (n + 1)-cluster tilting subcategory of GProj .o/, where d > 2.
If M = = 1X, then for any object ' € mod-X < mod-M, there is a natural isomorphism:

D Home(mod_M) (F‘7 —) i Home(mod_M) (—, F[TL + 2])
In particular, for any two objects F,G € mod-M with F € mod-X € mod-M:
DExt} g0 (F.G) —= Extioiii(G.F), ieZ
Proof. By Theorem 1.5, gl.dimmod-M < o0, so by a result of Happel [14], D®(mod-M), which coincides,
up to equivalence, with the category of perfect complexes over mod-M, has Auslander-Reiten triangles and

therefore D?(mod-M) admits a Serre functor which is given by 8§ = — ®% DHom (-, ?)|m[—1], where
Hom (—, 7)|[m(M) = Hom g (—, M) = H(M). Hence we have a natural isomorphism

D Home(mod—M) (Fa _) i’ Home(mod—M) (_7 F ®IJ\;[ D Homﬁf(_a ?)|M[_1])

So it suffices to show that we have an isomorphism F[n + 2] = F®%; D Hom (—,?)|x[—1], or equivalently
an isomorphism in the derived category D’(mod-M):

Fln + 3] = F ®% DHom(—,?)|n (10.11)

Applying the triangulated functor — ®% D Hom. (—,?)|am to projective resolution of F in (10.4) with F
deleted, it is easy to see that we obtain a complex

0 — DHom,/ (M}, , —)|m — DHomgg(Mzgl, N — - — DHomM(ME‘F, —)m —

e d DHomM(Ml,—)|M i DHomM(MO,—)|M — 0

which is acyclic everywhere except in first position on the left, which corresponds to —n — 3 degree, where the
homology is given by DExt! (K;l_l, —)|m. Since GProj o7 is (n+1)-Calabi-Yau, we have natural isomorphisms:

DExt'(Kj ', —)|ne = DHom (K71, —)|ac = Hom /(= Q7" 1QKE ) o =

Hom,, (—, Q7" K} ")|at = Hom , (2™(=), Kp ") |v = Extly (— Kp Y = F

where the last isomorphism follows from Lemma 10.2. We infer that in D?(mod-M) we have isomorphisms

Fln+3] = Ext%(— KiYn = F®%DHomy(—7)|x O
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